发烧论坛

注册

 

发新话题 回复该主题

How We Test Amplifiers如何测试放大器 [复制链接]

21#

darTZeel NHB-108 Model One Stereo

Additional Data

  • Measurements were made with 120V AC line voltage with both channels driven, driving the unbalanced inputs unless otherwise noted.
  • Gain: 20x, 26dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.602mV, -73.4dBW; A weighted 0.062mV, -93.2dBW.
  • Output noise, 8-ohm load, balanced input, 600-ohm input termination: wideband *6.41mV, -52.9dBW; A weighted 0.088mV, -90.1dBW. (* There was a small amount of approximately 90kHz low-level spurious signal in the left channel that the manufacturer indicates that some units do exhibit and is deemed harmless to the sound.)
  • AC line current draw at idle: 1.3A.
  • Output impedance at 50Hz: 0.29 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 142W

  • 4-ohm load at 1% THD: 158W
General
The darTZeel NHB-108 is a medium-power solid-state design with typically wide bandwidth and output impedance a bit higher than is usual for solid-state amplifiers. Some of its measured characteristics are similar to those of a tube amplifier, such as relatively high measured distortion and a modest damping factor. Both are suggestive of little or no overall negative feedback in the design.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen, the output impedance, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading, is quite low. The variation with the NHT dummy load in the audio range is of the order of +/-0.25 dB.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. As can be seen, attainable power is greater for the 4-ohm load, as is usual for most power amplifiers. Amount of distortion is relatively high for solid-state designs, but the way the amp goes into clipping is more like a typical solid-state amplifier.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Interestingly, the distortion amount vs. frequency for the lower powers is virtually constant, whereas at higher powers the distortion does rise a bit at the high end of the audio band.
Damping factor vs. frequency is shown in Chart 4, and is moderate but reasonably constant with frequency, again not usual for solid-state designs.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. The magnitude of the AC-line harmonics is quite numerous and intermodulation components of line harmonics with signal harmonics are also just visible near the noise floor. The test signal harmonics are both even and odd and don't decline or tail-off with frequency very fast.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 100W
Blue line: 40W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

  • 测量了既与120V交流线路电压驱动渠道,推动非平衡输入,除非另有说明。
  • 增益:20倍,为26dB。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.602mV,- 73.4dBW,一个加权0.062mV,- 93.2dBW。
  • 输出噪声,8欧姆负载,平衡输入,600欧姆的输入端接:宽带* 6.41mV,- 52.9dBW,一个加权0.088mV,- 90.1dBW。 (*有一个约90kHz低级别的杂散信号少量左声道的制造商表示,一些单位做展出,被认为是无害的声音。)
  • 交流线电流消耗在空闲:1.3a的。
  • 在50Hz输出阻抗:0.29欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:142W

  • 4欧姆负载,1%总谐波失真:158W
一般
总健康效益的darTZeel - 108是一种中等功率固体状态与一般宽的带宽和输出阻抗高一点,比固态放大器通常的设计。 其测量的特点有些类似,一个管放大器等相对高的测量失真和适度阻尼因子。 两者都是很少或根本没有整体的设计负反馈暗示。
图1显示了用不同的负载放大器的频率响应。 可以看出,输出阻抗,作为判断之间开路,8欧姆,4欧姆负荷曲线间距接近,是相当低的。 与音频范围内的莱科萨斯假负载的变化,是秩序+ / -0.25分贝。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 可以看出,可实现功率为4欧姆负载更大,因为是常见的,最功率放大器。 变形量相对固态设计的高,但这样的放大器去剪裁成更像是一个典型的固态放大器。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 有趣的是,主场迎战权力的较低频率的失真量几乎不变,而在更高的权力,扭曲并增加在音频频带高端一点。
阻尼随频率变化的因素是在图4所示,是温和的,但合理的频率不变,又不是固态设计如常。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 将AC -线路谐波幅度相当众多的线路谐波​​和互调分量信号谐波也只是接近本底噪声可见。 测试信号谐波都是偶数和奇数和尾下降或不小康,频率非常快。
TOP
22#

Esoteric A-100 Integrated

Additional Data

  • Measurements were made at 120V AC-line voltage with both channels being driven.
  • Measurements made on left channel and into the "RCA 1" input and on the 8-ohm output unless otherwise noted.
  • This integrated amplifier does not polarity.
  • AC line current draw at idle: 1.96A
  • Input sensitivity for 1W output into 8 ohms, volume at maximum, Lch/Rch: 72.0mV/67.8mV
  • Input impedance @ 1kHz
    • RCA 1 input: 10k ohms
    • XLR input: 20k ohms
    • Direct input: >350k ohms
  • Output impedance at 50Hz: 4.7 ohms
  • Gain, output voltage divided by input voltage, volume at maximum, Lch/Rch: 39.3X, 31.99dB/41.7X, 32.4dB
  • Output noise, 8-ohm load, 1k-ohm input termination, Lch/Rch
    • Volume control at reference position
      • wideband: 0.63mV, -70.0dBW/0.68mV, -72.4 dBW
      • A weighted: 0.30mV, -79.5dBW/0.16mV, -85.0dBW
    • Volume control full clockwise
      • wideband: 0.63mV, -70.0dBW/0.65mV, -72.8dBW
      • A weighted:0.28mV, -80.1dBW/0.20mV, -83.0dBW
    • Volume control full counterclockwise
      • wideband: 0.60mV, -73.5dBW/0.76mV, -71.4dBW
      • A weighted: 0.29mV, -79.8dBW/0.32mV, -78.9dBW

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 9.0W
  • 8-ohm load at 10% THD: 56.0W

  • 4-ohm load at 1% THD: 7.4W
  • 4-ohm load at 10% THD: 66.0W
General
The Esoteric A-100 is a medium-power stereo tube integrated amplifier. A pair of KT88 output tubes per channel provides a modest power output of about 45Wpc. The technology of the circuitry is said to provide automatic tube bias correction under various conditions. For such a technical story of the unit’s sophistication, the measurements of this design are not particularly impressive. It would appear that the amount of overall feedback is low given the high output impedance and consequent low damping factor. One thing of note is that the two-position bias-control switch didn’t seem to make a difference in distortion or AC-power drawn as would be the case if the actual output tube bias were changed as is suggested in the owner’s manual.
As a point of interest, the integrated amplifier sounded extremely refined, dynamic and musically realistic when driving my Genesis Advanced Technologies 6.1 speakers. However, I did have to reduce the bass level of the active woofers somewhat to get a more correct balance due to the rising impedance with decreasing frequency of these speakers.
Chart 1 shows the frequency response of the A-100 with varying loads. The high-frequency response is impressively wide, with an approximate 3dB down point of 80kHz and nicely controlled high-frequency roll-off. However, output impedance as judged by the closeness of spacing between the curves of open-circuit, 8-ohm, and 4-ohm loading is quite high. As a consequence, the NHT dummy-speaker load has a variation of a bit more than +/-2dB. In my opinion, this is too much and will produce audible coloration with many speaker loads. The frequency response was quite independent of volume-control setting. Volume-control tracking was generally within about 0.5dB down to –60dB, where it increased to about 2dB.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. Amount of distortion is typical of many tube power amplifiers with low overall amounts of feedback. Interestingly, the 4-ohm loading for the 1kHz test signal produces quite a bit lower distortion up to a few watts and a bit more maximum power at the 10% distortion point.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. The amount of rise in distortion at high frequencies is admirably low. Distortion does rise at low frequencies and relatively more at lower powers. At the 45W output level, distortion rises to greater than 10% below about 200Hz.
Damping factor vs. frequency is shown in Chart 4 and is, as mentioned above, quite low, resulting in poor output regulation with changing load. It is quite uniform over most of the audio range, however.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. The magnitudes of the AC-line harmonics are reasonably low and simple. There is evidence of the line harmonic intermodulation of the 1kHz signal, as seen in quite a few amplifiers. Signal harmonics consist of a tapering-off spectrum of even and odd harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 45W
Blue line: 30W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量是在120伏交流线路与被驱动两个通道的电压。
  • 测量左声道,就进入“RCA的一”输入和8欧姆的输出,除非另有说明。
  • 这种集成放大器并没有极性。
  • 交流线电流消耗在怠速:1.96A
  • 1W输出输入为8欧姆,音量开到最大的灵敏度,廖创兴/ Rch的:72.0​​mV/67.8mV
  • @ 1kHz的输入阻抗
    • RCA的1输入:10K欧姆
    • XLR输入:20,000欧姆
    • 直接输入:> 35万欧姆
  • 在50Hz输出阻抗:4.7欧姆
  • 增益,输出电压由输入电压,在最大音量分,廖创兴/ Rch的:39.3X,31.99dB/41.7X,32.4分贝
  • 输出噪声,8欧姆负载,1K的欧姆输入终端,廖创兴/ Rch的
    • 音量控制在基准位置
      • 宽带:0.63mV,-70.0dBW/0.68mV,-72.4无国界医生组织
      • A加权:0.30mV,-79.5dBW/0.16mV,- 85.0dBW
    • 音量控制旋钮顺时针满
      • 宽带:0.63mV,-70.0dBW/0.65mV,- 72.8dBW
      • A加权:0.28mV,-80.1dBW/0.20mV,- 83.0dBW
    • 音量控制逆时针
      • 宽带:0.60mV,-73.5dBW/0.76mV,- 71.4dBW
      • A加权:0.29mV,-79.8dBW/0.32mV,- 78.9dBW

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:9.0W
  • 8欧姆负载为10%总谐波失真:56.0W

  • 4欧姆负载,1%总谐波失真:7.4W
  • 4欧姆负载为10%总谐波失真:66.0W
一般
深奥的A - 100是一种中等功率管集成立体声放大器。 每一个通道输出的KT88管对提供约45Wpc适度的功率输出。 该电路技术一起提供了各种条件下自动管偏差修正。 对于这样一个单位的成熟技术的故事,这种设计的测量并不特别令人印象深刻。 这样看来,整体反馈量低鉴于高输出阻抗和随之而来的低阻尼因素。 一个值得注意的是,这两个位置偏差控制开关似乎并没有作出在变形或交流功率差得出的情况下,如果将实际输出管偏见,改变为在车主手册建议。
作为一个兴趣点,集成的放大器听起来非常精致,逼真的动态和驾驶时我的音乐创世纪的先进技术6.1音箱。 不过,我也必须减少低音喇叭低音的活跃程度有所以获得更正确的平衡,由于与这些扬声器的频率降低阻抗上升。
图1显示了不同负荷的A - 100的频率响应。 高频率响应赫然宽,上下近似3dB的点,很好地控制80kHz的高频滚降。 不过,输出阻抗作为判断之间开路,8欧姆,4欧姆加载曲线间距接近相当高。 作为一个结果,莱科萨斯虚拟扬声器负载有一点超过+ / - 2dB的变化。 在我看来,这是太多,会产生许多扬声器负载声染色。 频率的反应相当的音量控制设置无关。音量控制跟踪,一般在大约0.5分贝低至-60分贝,它增加至约2dB。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 变形量是由许多小管与总金额的反馈功率放大器的典型。 有趣的是,在1kHz的测试信号4欧姆负荷产生相当多的低失真高达数瓦,在10%失真点多一点的最大功率。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 在高频率的增加量是令人钦佩的失真低。 在低失真并增加频率较低的权力和相对较多。 在45瓦的输出电平,失真上升到高于10%低于约200Hz时。
阻尼随频率变化的因素是在图4所示是,如上所述,相当低,贫困导致输出调节变载。 这是很均匀的音频范围以上的多数,但是。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 在交流线路谐波的幅度相当低税率和简单。 目前该行的1kHz的谐波互调信号,在不少放大器看到的证据。 信号谐波组成的偶数和奇数谐波逐渐减少过谱。
TOP
23#

Grommes 360 Mono

Additional Data

  • Measurements were made with 120V AC line voltage and one channel driven (this is a mono amplifier). Data shown for the unbalanced input unless otherwise noted.
  • Input impedance
    • Unbalanced: 9.8k ohms.
    • Balanced: 14.1k ohms.
  • Gain
    • Pentode: 49x, 33.8dB.
    • Ultralinear: 30.5x, 29.7dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination
    • Pentode: wideband 1.3mV, -66.7dBW; A weighted 0.26mV, -80.7dBW.
    • Ultralinear: wideband 0.81mV, -70.9dBW; A weighted 0.12mV, -87.4dBW.
  • Output noise, 8-ohm load, balanced input, 600-ohm input termination
    • Pentode: wideband 1.0mV, -69.0dBW; A weighted 0.21mV, -82.6dBW.
    • Ultralinear: wideband 0.82mV, -70.7dBW; A weighted 0.17mV, -84.4dBW.
  • AC line current draw at idle: 1.45A.
  • Output impedance at 50Hz
    • Pentode: 17.3 ohms.
    • Ultralinear: 8.5 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD (P): 14W
  • 8-ohm load at 1% THD (UL): 12W
  • 8-ohm load at 10% THD (P): 77W
  • 8-ohm load at 10% THD (UL): 75W

  • 4-ohm load at 1% THD (P): 6.3W
  • 4-ohm load at 1% THD (UL): 7.5W
  • 4-ohm load at 10% THD (P): 88W
  • 4-ohm load at 10% THD (UL): 75W
General
The Grommes 360 is a medium-power, mono, push-pull tube power amplifier utilizing one pair of KT88 output tubes. Not usual in this day and age is the use of two tube high-voltage rectifiers and a 6L6 tube used presumably as a voltage regulator for either output-tube screen grid voltage or front-end-tube supply voltage.
Distortion behavior of the amp was essentially the same for balanced or unbalanced inputs. One thing that is a bit puzzling is the low input impedance. This parameter, for tube circuits, can easily be much higher than this and is typically 50k ohms or higher for most tube-amp designs. The low input impedance of this amp could penalize the performance of some otherwise very good tube preamps used to drive it.
Chart 1 shows the frequency response of the amp with varying loads for pentode and ultralinear modes. The output impedance, as judged by the closeness of spacing between the curves of open-circuit, 8-ohm, and 4-ohm loading in the pentode mode, is unusually high and would cause major aberrations in the frequency response of many loudspeakers. For instance, with the NHT dummy speaker load, the variation is some +/-5dB. In ultralinear mode, things are a bit better, but still the output impedance, in my opinion, is unacceptably high. All of this technical logic aside, it may well be that this amp with some speakers may be complementary to each other and sound very good.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for a 1kHz and SMPTE IM test signals and amplifier output load for both pentode and ultralinear modes. This design, with its single output connection for speaker loads, is about equally good for either 4- or 8-ohm loads in either pentode or ultralinear modes although, as usual, distortion is higher for the 4-ohm loading.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3 for both output-stage modes. Amount of rise in distortion at low frequencies is quite pronounced, but it is not atypical for many tube power amps. High-frequency-distortion rise is moderate and reasonably good.
Damping factor vs. frequency is shown in Chart 4. Here, we can see the unusually low damping factor in pentode mode and the approaching acceptable and typical value for some tube amps in ultralinear mode.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5 for the ultralinear mode. The pentode-mode signal spectrum was very similar, but had more hum components. The principal signal harmonics are second and third with the remaining harmonics about 20dB below the level of the second and third harmonics. However, there are some spurious non-harmonic-related components present in both modes.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading

Pentode

Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line = NHT dummy-speaker load

Ultralinear

Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line = NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading

Pentode

(line up at 1W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Ultralinear

(line up at 20W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency

Pentode

8-ohm output loading
Cyan line: 60W
Blue line: 30W
Magenta line: 10W
Red line: 1W

Ultralinear

8-ohm output loading
Cyan line: 60W
Blue line: 30W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8
Magenta line: Ultralinear
Red line: Pentode

Chart 5 - Distortion and Noise Spectrum

Ultralinear

1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量是用120V交流线路电压和一个通道驱动(这是一个单声道放大器)。 显示的数据输入的不平衡,除非另有说明。
  • 输入阻抗
    • 不平衡:9.8k欧姆。
    • 平衡:14.1k欧姆。
  • 增益
    • 五极管:49x,33.8分贝。
    • 超线性:30.5x,二十九点七分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆的输入端接
    • 五极管:宽带1.3mV,- 66.7dBW,一个加权0.26mV,- 80.7dBW。
    • 超线性:宽带0.81mV,- 70.9dBW,一个加权0.12mV,- 87.4dBW。
  • 输出噪声,8欧姆负载,平衡输入,600欧姆的输入端接
    • 五极管:宽带1.0mV,- 69.0dBW,一个加权0.21mV,- 82.6dBW。
    • 超线性:宽带0.82mV,- 70.7dBW,一个加权0.17mV,- 84.4dBW。
  • 交流线电流消耗在空闲:1.45A。
  • 在50Hz输出阻抗
    • 五极管:17.3欧姆。
    • 超线性:8.5欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载1%总谐波失真(P)的:14W的
  • 8欧姆负载1%总谐波失真(UL认证):12瓦
  • 8欧姆负载为10%总谐波失真(P)的:77W
  • 8欧姆负载为10%总谐波失真(UL认证):75瓦

  • 4欧姆负载1%总谐波失真(P)的:6.3W
  • 4欧姆负载1%总谐波失真(UL认证):7.5W
  • 4欧姆负载为10%总谐波失真(P)的:88W
  • 4欧姆负载为10%总谐波失真(UL认证):75瓦
一般
该Grommes 360是中等功率,单声道,推挽功放管采用一对输出管的KT88。 在这一天不和年龄通常是两个管高压整流器和一6L6管使用或用作输出管帘栅极电压或前端管稳压电源电压大概。
失真放大器行为本质上是平衡或不平衡输入相同。 有一件事情是有点令人费解的是低的输入阻抗。 此参数,为管电路,可以很容易地比这更高的,通常超过50K欧姆全部或大部分管放大器设计高。 这种放大器的输入阻抗可以低一些,否则惩罚非常好的管采用前置放大器来驱动它的性能。
图1显示了不同的五极管和超线性模式荷载作用下的放大器的频率响应。 输出阻抗,如之间开路,8欧姆,并在五极管模式4欧姆负荷曲线间距接近判断,是不寻常的高,并会引起许多扬声器频率响应的主要像差。 举例来说,随着莱科萨斯虚拟扬声器负载,变异是一些+ / - 5dB的。 在超线性模式,情况好一点,但仍是输出阻抗,在我看来,是令人无法接受。 这一技术逻辑都放在一边,它很可能是这与一些发言者放可能是互补,彼此的声音非常好。
图2说明了总谐波失真加噪声与电源一个1kHz和SMPTE即时测试信号和为五极管和超线性放大器的输出负载变化模式。 这与它的扬声器负载单输出接口设计,大约是同样对于任何美好4 - 或8欧姆的负载,或者虽然不是五极管,像往常一样,失真度为4欧姆负荷较高的超线性模式。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示为输出级模式。 在低频失真量上升是相当显着,但不是很多非典型功放管。 高频失真上涨温和,相当不错。
阻尼随频率变化的因素是列于图4。 在这里,我们可以看到在五极管模式不同寻常的低阻尼因素,接近可以接受的,典型的超线性模式中的一些管放大器的价值。
阿的谐波失真和10W的1kHz的测试信号噪声残留在频谱图5绘制的超线性模式。 在五极管模式的信号频谱是非常相似,但有更多的嗡嗡声元件。 主要信号谐波第二和第三位,约低于第二和第三级谐波20dB的剩余谐波。 不过,也有一些虚假的非谐波相关的组件在这两种模式存在。
TOP
24#

Krell FPB-300c Stereo

Additional Data

  • Measurements were made with 120V AC line voltage.
  • Power output plotted with both channels driven.
  • Gain: 20.9x, 26.4dB.
  • Output noise, 8-ohm load: wideband 0.227mV, -80.0 dBW; A weighted 0.054mV, -92.5 dBW.
  • AC line current draw at idle: 4.7A, 3.3A when driven hard and hot.
  • Output impedance: 0.069 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 470W
  • 8-ohm load at 10% THD: 520W

  • 4-ohm load at 1% THD: 800W
  • 4-ohm load at 10% THD: 950W
General
The Krell FBP-300c has a wide bandwidth of over 200kHz. Its output impedance is typical of many solid-state power amplifiers and, consequently, the difference between open circuit and 4-ohm loading is quite small. This can be seen in Chart 1. This means that the frequency response into a speaker load will be quite invariant with frequency. This design has what is termed by Krell as "Sustained Plateau Bias II," with the consequence that the amount of output stage current is increased in several steps as the signal level increases. In Chart 2 this has the effect of changing the amount of distortion as these transitions occur. Chart 2 also shows that the rated power of 300W into 8 ohms and 600W into 4 ohms is easily met before clipping occurs (where the distortion rises abruptly). Chart 3 illustrates the desirable characteristic of a low amount of rise in distortion as frequency increases. The low output impedance translates in to a high damping factor as seen in Chart 4. In Chart 5, the harmonic structure for the 10W signal is desirably simple in nature with no harmonics rising above the noise level above the 5th harmonic.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 1W to determine lines)
Top line: 4-ohm THD+N
Second line: 8-ohm THD+N
Bottom line (red): 8-ohm SMPTE IM

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Cyan line: 600W
Blue line: 100W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

附加数据

  • 测量是用120V交流电压。
  • 输出功率驱动的策划既渠道。
  • 增益:20.9x,二十六点四分贝。
  • 输出噪声,8欧姆负载:宽带0.227mV,-80.0无国界医生组织,一个加权0.054mV,-92.5无国界医生组织。
  • 交流线电流消耗在空闲:4.7A,3.3a按驱动时硬又热。
  • 输出阻抗:0.069欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:470W
  • 8欧姆负载为10%总谐波失真:已完成520W

  • 4欧姆负载,1%总谐波失真:800W的
  • 4欧姆负载为10%总谐波失真:950W
一般
该克雷尔投影- 300C的已超过200kHz的宽的带宽。 它的输出阻抗是许多固态功率放大器的典型,因此,两者开路和4欧姆负荷的差异是相当小的。 这可以看出,在图1。 这意味着到扬声器负载频率响应将是相当具有频率不变。 这样的设计有什么作为克雷尔被称为“持续高原偏差二,”随着该阶段的输出电流值是作为信号水平的提高增加了几个步骤的结果。 在图2这有改变的失真量的影响,因为这些转换发生。 图2还显示,300瓦到8欧姆和600W额定功率为4欧姆是很容易满足削波前发生(如失真崛起)。 图3说明了随着频率的增加,在低失真量上升可取的特点。 低到高输出阻抗转换为阻尼因子出现在图4。 图表5,为10W的信号的谐波结构简单,刻意在本质上没有谐波5次谐波以上的噪音水平不断提高。
TOP
25#

Linn Klimax Twin Stereo

Additional Data

  • Measurements were made with 120V AC line voltage.
  • Power output and distortion plotted with both channels driven.
  • Test signal applied to unbalanced inputs unless otherwise noted.
  • Gain: 27.1x, 28.7dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.348mV, -78.2dBW; A weighted 0.056mV, -94.1dBW.
  • Output noise, 8-ohm load, balanced input, 600-ohm input termination: wideband 0.220mV, -82.2dBW; A weighted 0.035mV, -98.2dBW.
  • AC line current draw at idle: 0.67A; AC line current draw in standby: 0.27A.
  • Output impedance at 50Hz: 0.08 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 118W

  • 4-ohm load at 1% THD: 212W
General
The Linn Klimax 500 Twin design utilizes a switching power supply, and hence allows for the attractive compact form it takes. It appears that Linn has done their homework regarding shielding and managing the potential radiation and corruption from the power-supply switching action. Although I could see some switching noise in the low-power distortion readings, it was way down there in the neighborhood of the 1mV level.
Measurements shown were made through the unbalanced inputs. Most results were essentially the same through the balanced inputs with the exception of the output noise, which was lower using the balanced inputs as the balanced gain is about 6dB lower than the unbalanced input gain. Chart 1 shows the frequency response of the amp with varying loads from an open circuit down to a 4-ohm value. This amp's output impedance is low enough to not bother with plotting the NHT dummy-speaker-load response as the variation would be only of the order of +/- 0.1dB. Chart 2 illustrates how total harmonic distortion plus noise versus power varies for 1kHz and SMPTE IM test signals and amplifier output load. As can be seen, attainable power is greater for the 4-ohm load as is usual for most power amplifiers. Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. In this plot, the 1W level is dominated by switching noise, which is within the 80kHz measurement bandwidth used for the chart. Damping factor versus frequency is shown in Chart 4. A spectrum of the harmonic distortion and noise residue for a 1kHz test-signal frequency, 10W output level, and 4-ohm loading is plotted in Chart 5. The amount of AC line harmonics are admirably low and there is no hum modulation of some of the signal harmonics as have been seen in quite a few other amplifiers measured.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Green line: 1W
Cyan line: 10W
Blue line: 30W
Red line: 100W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 4-ohm load

附加数据

  • 测量是用120V交流电压。
  • 输出功率和失真策划既带动渠道。
  • 测试信号施加到非平衡输入,除非另有说明。
  • 增益:27.1x,二十八点七分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.348mV,- 78.2dBW,一个加权0.056mV,- 94.1dBW。
  • 输出噪声,8欧姆负载,平衡输入,600欧姆的输入端接:宽带0.220mV,- 82.2dBW,一个加权0.035mV,- 98.2dBW。
  • 交流线电流消耗,在闲置:0.67A;交流线电流消耗在待机时:0.27A。
  • 在50Hz输出阻抗:0.08欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:118W

  • 4欧姆负载,1%总谐波失真:212W
一般
在林恩Klimax 500双床设计采用了开关电源,从而为有吸引力的紧凑形式需要允许。 看来,林恩已经做好功课和管理方面的潜力屏蔽辐射和功率开关电源的腐败行为。 虽然我可以看到在低功耗读数失真一些开关噪声,这是那里的方式在1mV的水平附近。
测量显示是通过非平衡输入制成。 大部分结果基本上是相同的通过与输出噪声,这是降低使用平衡输入,平衡增益约为6dB的输入增益比不平衡异常低的平衡输入。 图1显示了不同的开路下,从一到4欧姆值荷载作用下的放大器的频率响应。 这种放大器的输出阻抗足够低,不费心策划莱科萨斯虚拟扬声器负载响应的变化将是唯一的秩序+ / - 0.1dB的。 图2说明了总谐波失真加噪声功率比和SMPTE即时1kHz的测试信号和放大器的输出负载变化。可以看出,可实现功率为4欧姆负载的是常见的,最功率放大器更大。 总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 在这个小区,1W的水平主要由开关噪声,在80kHz的范围内测量的图表中使用的带宽。 阻尼频率因子与图4所示。 阿的谐波失真和一个1kHz测试信号的频率,10W的输出电平,4欧姆载荷谱噪声残留绘制于图5。 交流线路的谐波量低,是令人钦佩的是没有为已经在相当一个测量放大器看到了一些其他一些嗡嗡声信号谐波调制。
TOP
26#

Luxman B-1000F Mono

dditional Data

  • Measurements were made at 120V AC line voltage and using the balanced inputs unless otherwise noted.
  • Input/output polarity:
    • Unbalanced inputs: non-inverting
    • Balanced inputs: switchable; default is inverting (relative to pin 2 hot)
  • AC line current draw at idle: 3.2A
  • Input impedance @ 1kHz:
    • Unbalanced input: 52.5k ohms
    • Balanced input: 40.0k ohms
  • Output impedance at 50Hz: 0.0039 ohms
  • Input sensitivity for 1W output into 8 ohms:
    • Unbalanced input: 64.3mV
    • Balanced input: 64.7mV
  • Gain, output voltage divided by input voltage:
    • Unbalanced input: 44.0X, 32.8dB
    • Balanced input: 43.7X, 32.8dB
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination:
    • Wideband: 0.28mV, -80.1dBW
    • A weighted: 0.071mV, -92.0dBW
  • Output noise, 8-ohm load, balanced input, 600-ohm input termination:
    • Wideband: 0.96mV, -69.3dBW
    • A weighted: 0.29mV, -79.8dBW

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 312W
  • 8-ohm load at 10% THD: 427W

  • 4-ohm load at 1% THD: 632W
  • 4-ohm load at 10% THD: 844W
General
The Luxman B-1000f is a high-power solid-state mono power amplifier and the flagship of the Luxman line.
Chart 1 shows the frequency response of the amp with varying loads. The high-frequency response is moderately wide with an approximate -3dB point of about 90kHz. Output impedance, as judged by the closeness of spacing between the curves of open-circuit, 8-ohm, and 4-ohm loading, is very low in the audio band and beyond. The usual NHT dummy-load curve is not shown, as the variations in the response would not show.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. Amount of distortion is low right up to clipping -- the behavior of most solid-state power amplifiers. This particular design has an enormous power supply and super-beefy output stage and is said to put out 2kW into 1-ohm loads. I have no doubt that it can.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3 for 4-ohm loading. As is usual for all but a very few amplifiers, the distortion does rise at high frequencies, above around 500Hz.
Damping factor vs. frequency is shown in Chart 4 and is of a very high value at low frequencies and typical of many solid-state amplifiers, being high at low frequencies and rolling off with increasing frequency starting at some 200Hz. Still, for this amplifier, the damping factor is greater than 100 at 20kHz.
The spectrum of AC-line and test signal-harmonics shown in Chart 5 for a 10W 1kHz test signal into 4 ohms has low amounts of AC-line harmonics. Signal harmonics of second, third, fourth, and fifth order are visible at very low magnitudes, the second being the highest at only 0.001%.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 70W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line: 8-ohm THD+N
Bottom line: 8-ohm SMPTE IM

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Green line: 500W
Cyan line: 200W
Blue line: 70W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

  • 测量是在120V交流电压和使用平衡输入,除非另有说明。
  • 输入/输出极性:
    • 非平衡输入:非反相
    • 平衡输入:切换,默认是反相(相对于针脚2热)
  • 交流线电流消耗在怠速:性别Age and sex
  • @ 1kHz的输入阻抗:
    • 不平衡输入:52.5k欧姆
    • 平衡输入:40.0k欧姆
  • 在50Hz输出阻抗:0.0039欧姆
  • 1W的输入灵敏度为8欧姆的输出:
    • 不平衡输入:64.3mV
    • 平衡输入:64.7mV
  • 增益,输出电压输入电压分为:
    • 非平衡输入:44.0X,三十二点八分贝
    • 平衡输入:43.7X,三十二点八分贝
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆的输入端接:
    • 宽带:0.28mV,- 80.1dBW
    • A加权:0.071mV,- 92.0dBW
  • 输出噪声,8欧姆负载,平衡输入,600欧姆的输入端接:
    • 宽带:0.96mV,- 69.3dBW
    • A加权:0.29mV,- 79.8dBW

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:312W
  • 8欧姆负载为10%总谐波失真:427W

  • 4欧姆负载,1%总谐波失真:632W
  • 4欧姆负载为10%总谐波失真:844W
一般
该Luxman的B - 1000f是一种高功率固体单声道功率放大器和Luxman线的旗舰。
图1显示了用不同的负载放大器的频率响应。 高频率响应适中,约90kHz近似的- 3dB点宽。 输出阻抗,如之间开路,8欧姆,4欧姆负荷曲线间距接近判断,是非常低的音频带和超越。 通常莱科萨斯假负载曲线没有显示出来,如响应的变化将不会显示。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 低失真的数额直到剪辑 - 大多数固态功率放大器的行为。 这种特殊的设计有一个巨大的电源和超结实的输出阶段,并表示将出到1欧姆负载的2kW。 我毫不怀疑,它可以。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示为4欧姆负载。 正如一切照旧,所有除了极少数放大器,失真并增加在高频率高于500Hz的周围。
阻尼随频率变化的因素是显示在图4和第一个在低频率非常高的价值,以及许多固态放大器的典型,是在高频率和低频率的增加滚动一些200Hz时出发。 然而,对于这个放大器,阻尼因子大于100在20kHz的。
在交流线和测试信号谐波频谱图5所示为1kHz时为4欧姆,10W的测试信号有交流线路的谐波含量很低。 第二,第三,第四和五阶谐波信号在非常低的程度可见,第二个是在只有0.001%的最高水平。
TOP
27#

Luxman L-509u Integrated

  • Measurements were made at 120V AC line voltage with both channels being driven.
  • Measurements were made on the left channel on the unbalanced inputs in the "line-straight" mode unless otherwise noted.
  • Input/output polarity
    • Unbalanced inputs: non-inverting
    • Balanced inputs: inverting
      (note: balanced inputs do invert polarity in the "normal" position of the balanced input phase switch as Luxman has defined pin 3 "hot" for their balanced inputs. This is easily changed by pressing the switch to "reverse.")
    • Phono inputs: non-inverting
  • AC line current draw at idle: 1.1A
  • Input sensitivity for 1W output into 8 ohms, volume at maximum, Lch/Rch
    • Unbalanced inputs: 17.3mV / 17.3mV
    • Balanced inputs: 17.5mV / 17.6mV
  • Input impedance @ 1kHz
    • Unbalanced inputs: 51k ohms
    • Balanced inputs: 65k ohms
    • Phono MM inputs: 46k ohms
    • Phono MC inputs: 100 ohms
  • Output impedance at 50Hz: 0.027 ohm
  • Gain, output voltage divided by input voltage, volume at maximum, Lch/Rch
    • Unbalanced inputs: 163.6X, 44.3dB / 163.2X, 44.3dB
    • Balanced inputs: 161.3X, 44.2 dB / 161.1X, 44.1dB
  • Phono gain, at 1kHz to tape out
    • MM: 59.8X, 35.5dB
    • MC: 550.0X, 54.8dB
  • Phono overload, input voltage at 1kHz at onset of visual distortion
    • MM: 165.0mV
    • MC: 21.6mV
  • Output noise, unbalanced inputs, 8-ohm load, 1k-ohm input termination, Lch/Rch
    • Volume control at reference position
      • wideband: 2.1mV, -62.6dBW / 2.1mV, -73.9dBW
      • A weighted: 0.30mV, -79.5dBW / 0.28mV, -80.1dBW
    • Volume control full clockwise
      • wideband: 3.8mV, -57.4dBW / 4.0mV, -57.0dBW
      • A weighted: 0.20mV, -83.0dBW / 0.23mV, -81.8dBW
    • Volume control set for 20dB attenuation below reference
      • wideband: 1.7mV, -64.4dBW / 1.7mV, -64.4dBW
      • A weighted: 0.18mV, -84.0 dBW / 0.17mV, -84.4dBW
    • Volume control full counterclockwise
      • wideband: 1.6mV, -65.0dBW / 1.6mV, -65.0dBW
      • A weighted: 0.18 mV, -84.0dBW / 0.16mV, -85.0dBW
  • Output noise, balanced inputs, 8-ohm load, 1k-ohm input termination, Lch/Rch
    • Volume control at reference position
      • wideband: 2.1mV, -62.6dBW / 2.1mV, -62.6dBW
      • A weighted: 0.31mV, -79.2dBW / 0.29mV, -79.8dBW
    • Volume control full clockwise
      • wideband: 3.9mV, -57.2dBW / 3.9mV, -57.2dBW
      • A weighted: 1.1mV, -68.2dBW / 1.1mV, -68.2dBW
    • Volume control set for 20dB attenuation below reference
      • wideband: 1.7mV, -64.4dBW / 1.7mV, -64.4dBW
      • A weighted: 0.20mV, -83.0dBW / 0.17mV, -84.4dBW
    • Volume control full counterclockwise
      • wideband: 1.5mV, -65.5dBW / 1.6mV, -65.0dBW
      • A weighted: 0.17mV, -84.4dBW / 0.15mV, -85.5dBW
  • Phono-referred-equivalent input noise, Lch/Rch
    • MM, input 1k-ohm termination resistance
      • wideband: 5.8uV / 5.6uV
      • A weighted: 0.27uV / 0.28uV
    • MC, input 100-ohm termination resistance
      • wideband: 0.65uV / 0.69uV
      • A weighted: 0.13uV / 0.12uV

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 156.1W
  • 8-ohm load at 10% THD: 247.8W

  • 4-ohm load at 1% THD: 130.8W
  • 4-ohm load at 10% THD: 300.4W
General
A few preliminary points about the measurements. It was found that there was virtually no difference in distortion between the unbalanced and balanced inputs. Therefore, the unbalanced inputs were used for most tests. Also, the performance with the tone and balance controls engaged was about the same as with the Line Straight mode, so the latter was used for testing.
The Luxman L-509u is a medium-power solid-state integrated amplifier. As this unit has a preamplifier line stage within, overall line-input gain of this unit is somewhat high compared to the general current trend in integrated amplifiers, where the gain is generally near power-amplifier-only gain. Still, the gain combination of the L-509u is that of a typical power amplifier -- only gain plus that of a modest-gain line-level preamp -- and that is known to work just fine in practice.
Chart 1 shows the frequency response of the integrated amp with varying loads. This plot was made with the reference volume-control position as set for 0.5V input to produce 5W output into an 8-ohm load. The high-frequency response at the reference setting of the volume control is reasonably wide, having a -3dB point of about 100kHz. Further, the output impedance of the amp is quite low and, therefore, the NHT dummy-load response is not shown, as its variations would not show at the plot's vertical resolution. As is frequently the case, high-frequency response was somewhat a function of volume-control setting, varying from what looks like a higher bandwidth but different response between channels at full volume as shown in Chart 1A, to a more rolled-off response below full volume than in Chart 1, to an almost flat response out to 200kHz at 50dB of attenuation. Bandwidth is widening toward this at -40dB of attenuation, as shown plotted in Chart 1B.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. This unit exhibits typical solid-state low-distortion behavior of noise-dominated distortion at low powers, with actual distortion starting to show at powers of about 50W and above.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3 for 4-ohm loading. A good result is that the amount of rise in distortion at high frequencies is moderate.
Damping factor vs. frequency is shown in Chart 4 and is of a high value at low frequencies and, as typical of many solid-state power amplifiers, begins to fall off rapidly with frequency at about 500Hz.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal into 4 ohms is plotted in Chart 5. The magnitudes of the AC-line harmonics are low. Signal harmonics are low, and intermodulation effects of the AC-line harmonics on the signal harmonics are quite absent here.
With the Line Straight button disengaged to allow balance and tone-control use, tone-control characteristics were measured and are shown in Chart 6.
Lastly, RIAA equalization error was measured for both MM and MC modes and is shown plotted in Charts 7A and 7B.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading

1A
volume control at reference position

Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load

1B
volume control full up, 8-ohm load

Red line: open circuit
Blue line: 8-ohm load

1C
volume control -20dB below reference position, 8-ohm load

Red line: open circuit
Blue line: 8-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 20W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line: 8-ohm SMPTE IM
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Green line: 100W
Blue line: 70W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

Chart 6 - Phono-Stage RIAA Equalization Error

7A
moving magnet (MM)

Red line: left channel
Blue line: right channel

7B
moving coil (MC)

Red line: left channel
Blue line: right channel

Chart 8 - Tone-Control Response


Data below 1kHz
Blue line (top): maximum bass boost
Red line: intermediate bass boost
Green line: flat
Magenta line: intermediate bass cut
Blue line (bottom): maximum bass cut

Data above 1kHz
Magenta line (top): maximum treble boost
Blue line (second from top): intermediate treble boost
Blue line (third from top): flat
Light blue line: intermediate treble cut
Green line: maximum treble cut

  • 测量是在120V交流线路电压均为驱动渠道。
  • 测量是在“行直”模式,除非另有说明就关于非平衡输入左声道。
  • 输入/输出极性
    • 非平衡输入:非反相
    • 平衡输入:反相
      (注:平衡输入做的“正常”的平衡输入相开关的位置作为Luxman确定了3针“热”的平衡式输入,这是很容易被按下开关来改变极性反转。“反向”。)
    • 唱机输入:非反相
  • 交流线电流消耗在怠速:为1.1A
  • 1W输出的输入灵敏度为8欧姆,体积最大,廖创兴/ Rch的
    • 非平衡输入:17.3mV / 17.3mV
    • 平衡式输入:17.5mV / 17.6mV
  • @ 1kHz的输入阻抗
    • 非平衡输入:51k欧姆
    • 平衡输入:65000欧姆
    • MM的唱机输入:46k欧姆
    • 管委会唱机输入:100欧姆
  • 在50Hz输出阻抗:0.027欧姆
  • 增益,输出电压由输入电压,在最大音量分,廖创兴/ Rch的
    • 非平衡输入:163.6X,四十四点三分贝/ 163.2X,四十四点三分贝
    • 平衡输入:161.3X,44.2分贝/ 161.1X,四十四点一分贝
  • 唱机增益,在1kHz到磁带出
    • 莫斯利:59.8X,35.5分贝
    • 主持人:550.0X,五十四点八分贝
  • 唱机过载,输入电压在1kHz发病的视觉失真
    • 莫斯利:165.0mV
    • 司仪:21.6mV
  • 输出噪声,非平衡输入,8欧姆负载,1K的欧姆输入终端,廖创兴/ Rch的
    • 音量控制在基准位置
      • 宽带:2.1mV,- 62.6dBW / 2.1mV,- 73.9dBW
      • A加权:0.30mV,- 79.5dBW / 0.28mV,- 80.1dBW
    • 音量控制旋钮顺时针满
      • 宽带:3.8mV,- 57.4dBW / 4.0mV,- 57.0dBW
      • A加权:0.20mV,- 83.0dBW / 0.23mV,- 81.8dBW
    • 20dB的音量控制设定以下参考衰减
      • 宽带:1.7mV,- 64.4dBW / 1.7mV,- 64.4dBW
      • A加权:0.18mV,-84.0无国界医生组织/ 0.17mV,- 84.4dBW
    • 音量控制逆时针
      • 宽带:1.6mV,- 65.0dBW / 1.6mV,- 65.0dBW
      • A加权:0.18毫伏,- 84.0dBW / 0.16mV,- 85.0dBW
  • 输出噪声,平衡输入,8欧姆负载,1K的欧姆输入终端,廖创兴/ Rch的
    • 音量控制在基准位置
      • 宽带:2.1mV,- 62.6dBW / 2.1mV,- 62.6dBW
      • A加权:0.31mV,- 79.2dBW / 0.29mV,- 79.8dBW
    • 音量控制旋钮顺时针满
      • 宽带:3.9mV,- 57.2dBW / 3.9mV,- 57.2dBW
      • A加权:1.1mV,- 68.2dBW / 1.1mV,- 68.2dBW
    • 20dB的音量控制设定以下参考衰减
      • 宽带:1.7mV,- 64.4dBW / 1.7mV,- 64.4dBW
      • A加权:0.20mV,- 83.0dBW / 0.17mV,- 84.4dBW
    • 音量控制逆时针
      • 宽带:1.5mV,- 65.5dBW / 1.6mV,- 65.0dBW
      • A加权:0.17mV,- 84.4dBW / 0.15mV,- 85.5dBW
  • 唱机,称为等效输入噪声,廖创兴/ Rch的
    • 的MM,输入1k的欧姆的终端电阻
      • 宽带:5.8uV / 5.6uV
      • A加权:0.27uV / 0.28uV
    • 三菱商事,输入100欧姆终端电阻
      • 宽带:0.65uV / 0.69uV
      • A加权:0.13uV / 0.12uV

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:156.1W
  • 8欧姆负载为10%总谐波失真:247.8W

  • 4欧姆负载,1%总谐波失真:130.8W
  • 4欧姆负载为10%总谐波失真:300.4W
一般
关于一些初步的测量点。 结果发现,大致上没有不平衡之间的差异和平衡输入失真。 因此,不平衡的投入被用于大多数测试。 此外,与平衡的基调和从事有关控制性能作为与行,直模式大致相同,因此后者是用于测试。
在Luxman L型509u是一个中等功率固态放大器集成。 由于本单位的前置线阶段内,总体思路,输入本机的增益是有点高比一般的,目前的趋势,即集成放大器的增益一般是近功率放大器只增益。 尽管如此,在L - 509u增益组合,是一个典型的功率放大器 - 只获得一个温和的加增益线路级放大器 - 这是已知能够在实践中就好了。
图1显示了变载荷集成放大器的频率响应。 此图写了与参考音量控制位​​置为0.5V的输入,以产生为8欧姆负载5W输出设置。 在音量控制设置参考高频率响应范围是合理的,具有的- 3dB点为100kHz左右。 此外,该放大器的输出阻抗非常低,因此,莱科萨斯假负载反应并不显示,因为它的变化不会显示在图的垂直分辨率。 由于经常出现的情况,高频率响应有点的音量控制设置功能,从什么像一个更高的带宽,但不同的反应通道间的最大音量,如在图1a所示的外表,变到更推出过下面的反应全卷图表比1,几乎平坦的响应了在衰减为50dB至200kHz。 带宽是朝这个在-衰减四十○分贝扩大,如绘于图1B所示。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 本单元展示典型的固态低失真行为噪声占主导地位的权力,在低失真,失真的实际出发,以显示在约50瓦及以上的权力。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示为4欧姆负载。 一个很好的结果是,在高频率的失真量上升是温和的。
阻尼系数与频率显示在图4和第一个在低频率高值,并为众多的固态功率放大器的典型,开始脱落频率约为500Hz的迅速。
阿的谐波失真和10W的1kHz的测试信号噪声残留为4欧姆谱绘制于图5。 在交流线路谐波的幅度较低。 信号谐波低,对信号的谐波的交流线路谐波互调的影响是相当不存在了。
随着线直按钮脱开,使平衡和音调控制使用,音调控制特性进行了测量,并在图6所示。
最后,美国唱片行业协会,测量误差均衡为MM和MC的模式,并显示在图7A和7B绘制。

以下数据1kHz时
蓝线(上):最大低音增强
红线:中间低音增强
绿线:平
洋红色线条:中间低音切
蓝线(下):最大的低音切

以上数据1kHz时
洋红色线条(上):最大高音增强
蓝线(第二次从上):中间高音增强
蓝线(第三次从上):平
淡蓝色行:中间高音切
绿线:最大高音切


TOP
28#

Manley Laboratories Snapper Mono

  • Measurements were made with 120V AC line voltage.
  • Output tube plate current adjusted to 30mA per tube when warmed up.
  • Power output and distortion plotted with both channels driven.
  • Gain, unbalanced input/balanced input: 36.4x, 31.2dB/19.2x, 25.7dB.
  • Output noise, 8-ohm load, unbalanced input, 1-kohm input termination: wideband 0.6mV, -73.5dBW; A weighted 0.13mV, -86.7dBW.
  • AC line current draw at idle: 1.4A.
  • Output impedance at 50Hz: 1.8 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 60W
  • 8-ohm load at 10% THD: 120W

  • 4-ohm load at 1% THD: 10W
  • 4-ohm load at 10% THD: 150W

  • 16-ohm load at 1% THD: 53W
  • 16-ohm load at 10% THD: 82W
General
This amp is a push-pull design rated at a nominal 100W. Bias is set by convenient test points and adjustable controls on the top part of the chassis. The idling current as received when warmed up was quite uniform between the four output tubes at about 30mA (0.3V across assumed 10-ohm resistors) and was not adjusted for the measurements.
Measurements were made using the unbalanced input. It was found that results with the balanced inputs were virtually the same. Frequency response, as seen in Chart 1, is beautifully controlled in the high-frequency end as a function of load. The low-frequency response holds up down to 10Hz nicely at the 1W level of the test. Output impedance is typical of many tube amplifiers giving an approximate +/-1dB frequency-response variation with the NHT dummy-speaker load. Total Harmonic distortion plus noise as a function of power output and load for a test frequency of 1kHz is plotted in Chart 2. Also shown in this chart is the SMPTE IM distortion for an 8-ohm load. Not having separate 4- and 8-ohm outputs available, this amp is clearly designed for an optimum load lower than 8 ohm, most likely around 6 ohms. This can be seen as the attainable output power is more like 140-150W into 4 ohms. As a result of this, considerably less power is available into 16-ohm loads. Total harmonic distortion plus noise as a function of frequency at several power levels is plotted in Chart 3 for an 8-ohm load. Amount of distortion over the main midrange energy band is less than 1% for power outputs of 30W or less. Admirable is the relatively low amount of distortion increase at the higher frequencies. However, distortion does rise considerably below 20Hz at higher power levels. Still, this is very good performance indicating a good output transformer design (as was the nicely controlled high-frequency response). Damping factor vs. frequency referred to an 8-ohm load is plotted in Chart 4 and is approximately 4.5 over most of the audio range. In the spectral plot of distortion and noise for a 10W 1kHz signal into an 8-ohm load on the 8-ohm output, the signal distortion components are dominated by the second and third harmonics with higher-order harmonics at reduced and decreasing amplitude with frequency. There is quite a bit of hum modulation around the suppressed fundamental 1kHz test frequency.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 5W to determine lines)
Top line: 8-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line: 8-ohm THD+N
Bottom line: 16-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 100W
Blue line: 30W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量是用120V交流电压。
  • 输出电流调整管板每管时至30mA热身。
  • 输出功率和失真策划既带动渠道。
  • 增益,非平衡输入/平衡输入:36.4x,31.2dB/19.2x,二十五点七分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1千欧姆输入终端:宽带0.6mV,- 73.5dBW,一个加权0.13mV,- 86.7dBW。
  • AC线在空闲电流消耗:1.4A的。
  • 在50Hz输出阻抗:1.8欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真率:60W
  • 8欧姆负载为10%总谐波失真功率:120W

  • 4欧姆负载,1%总谐波失真:10W的
  • 4欧姆负载为10%总谐波失真功率:150W

  • 16欧姆负载,1%总谐波失真:53W
  • 16欧姆负载为10%总谐波失真:82W
一般
此放大器是推挽设计在100W的额定标称。 偏置方便的检测方法是由点和机箱的顶部可调节控制。 空载电流回暖时,收到了相当约三○毫安四个输出管之间的一致(假定为0.3V跨越10欧姆的电阻),而不是为测量调整。
测量了使用不均衡的投入。 结果发现,随着平衡输入结果大致相同。 频率响应,如图表1所示,是控制在美丽的负载功能作为高频结束。 低频响应容纳到在10Hz的试验1W的水平很好。 输出阻抗是许多管提供一个近似的+ / - 1dB的频率响应与莱科萨斯虚拟扬声器放大器的典型负载的变化。 总谐波失真加一个功能,输出功率为1kHz的测试频率负载噪音绘制于图2。 也将在此图是SMPTE的聊天室为一个8欧姆负载失真。 具有单独的4 - 和8欧姆输出可用,这显然是放大器设计为最佳负载低于8欧姆,6欧姆左右最有可能。 这可以被看作是可以实现的输出功率更象140 - 150W的是为4欧姆。 由于这一结果,大大减少电源的情况下为16欧姆负载。 总谐波失真加作为频率的函数噪声功率水平在几个图3所示为一个8欧姆的负载。 中档以上的主要能源带失真量小于1为30W的功率输出%或更少。 令人钦佩的是在较高的变形频率的增加量相对较低。 然而,不失真功率较高增长水平低于20Hz的很大。不过,这是很好的业绩显示出良好的输出变压器的设计(就像是很好控制的高频率响应)。阻尼系数与频率提到了8欧姆负载于图4策划,大约超过4.5音频范围最。 在失真和噪声为10W的1kHz的信号频谱图上成8欧姆输出8欧姆负载,信号失真成分为主,同时降低,降低幅度与频率高次谐波的二次和三次谐波。 有相当多的周围被抑制的根本1kHz的测试频率的嗡嗡声调制位。
TOP
29#

Manley Laboratories Mahi Mono

Additional Data

  • Measurements were made with 120V AC line voltage and one channel driven (this is a mono amplifier).
  • Gain
    • Ultralinear: 28.9x, 29.5dB.
    • Triode: 52.3x, 34.4dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination
    • Ultralinear: wideband 1.68mV, -64.5dBW; A weighted 0.345mV, -78.30dBW.
    • Triode: wideband 3.02mV, -59.4dBW; A weighted 0.626mV, -73.1dBW.
  • AC line current draw at idle: 0.8A.
  • Output impedance at 50Hz
    • Ultralinear: 1.4 ohms.
    • Triode: 3.0 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD (ultralinear): 30W
  • 8-ohm load at 1% THD (triode): 12W
  • 8-ohm load at 10% THD (ultralinear): 38W
  • 8-ohm load at 10% THD (triode): 23W

  • 4-ohm load at 1% THD (ultralinear): 25W
  • 4-ohm load at 1% THD (triode): 8W
  • 4-ohm load at 10% THD (ultralinear): 40W
  • 4-ohm load at 10% THD (triode): 25W
General
The Manley Mahi is a low-to-medium-power tube amplifier utilizing two pairs of EL84 output tubes operated in push-pull parallel. The design is quite flexible as it has two toggle switches that change the output-tube operating mode from ultralinear to triode, and change the amount of negative feedback in three steps. Rated power is 40W in ultralinear mode and 20W in triode mode.
Because there are really six combinations of output-stage mode and amount of feedback, I am going to give characteristics for two extremes: ultralinear with maximum feedback and triode with minimum feedback.
Chart 1A shows the frequency response of the amp in ultralinear mode with varying loads. As can be seen, the output impedance, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading, is of a relatively low value for a tube amplifier. The variation with the NHT dummy load in the audio range is of the order of +/-1dB. Chart 1B illustrates the frequency response in triode mode with minimum feedback. Here it can be seen that the spacing of the curves is much greater with consequent lower damping factor. Further, the-above-the-audio-range peaking of the ultralinear output is absent in the triode output. Not shown is the fact that the relative curve spacing is about the same for ultralinear and triode for the three different amounts of feedback.
Chart 2A shows how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. In ultralinear, the attainable power is about the same for 4- and 8-ohm loads. In chart 2B, the attainable power is slightly higher for the 4-ohm load.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in chart 3A for ultralinear mode. Amount of rise in distortion at low and high frequencies is reasonable and typical for a tube power amplifier. In chart 3B for triode, the amount of distortion is generally similar to that of the ultralinear output except the amount of rise at high frequencies is a bit greater.
Damping factor vs. frequency is shown in chart 4A and 4B for ultralinear and triode, respectively.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in chart 5A and chart 5B for ultralinear and triode modes. The magnitude of the AC-line harmonics is typical for many amplifiers, and intermodulation components of line harmonics with signal harmonics are also visible around the nulled-out fundamental signal frequency and the lower harmonics. The signal-harmonic spectrum tails off reasonably rapidly.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading

Ultralinear - Maximum Feedback

Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Triode - Minimum Feedback

Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading

Ultralinear - Maximum Feedback

(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Triode - Minimum Feedback

(line up at 1W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency

Ultralinear - Maximum Feedback

4-ohm output loading
Cyan line: 30W
Blue line: 20W
Magenta line: 5W
Red line: 1W

Triode - Minimum Feedback

4-ohm output loading
Cyan line: 15W
Blue line: 10W
Magenta line: 5W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency

Ultralinear - Maximum Feedback

Damping factor = output impedance divided into 8

Triode - Minimum Feedback

Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum

Ultralinear - Maximum Feedback

1kHz signal at 10W into an 8-ohm load

Triode - Minimum Feedback

1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量是用120V交流线路电压和一个通道驱动(这是一个单声道放大器)。
  • 增益
    • 超线性:28.9x,29.5分贝。
    • 三极管:52.3x,三十四点四分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆的输入端接
    • 超线性:宽带1.68mV,- 64.5dBW,一个加权0.345mV,- 78.30dBW。
    • 三极管:宽带3.02mV,- 59.4dBW,一个加权0.626mV,- 73.1dBW。
  • AC线在空闲电流消耗:0.8A。
  • 在50Hz输出阻抗
    • 超线性:1.4欧姆。
    • 三极管:3.0欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载1%总谐波失真(超线性)功率:30W
  • 8欧姆负载1%总谐波失真(三极管):12瓦
  • 8欧姆负载为10%总谐波失真(超线性):38W
  • 8欧姆负载为10%总谐波失真(三极管):23W

  • 4欧姆负载1%总谐波失真(超线性)功率:25W
  • 4欧姆负载1%总谐波失真(三极管):为8W
  • 4欧姆负载为10%总谐波失真(超线性)功率:40W
  • 4欧姆负载为10%总谐波失真(三极管)功率:25W
一般
马希的曼利是低到中等功率管放大器,利用两个EL84输出工作在推挽式并联管双。 该设计非常灵活,因为它有两个拨动开关,改变超线性输出管经营模式三极管,并更改三个步骤负反馈量。 额定功率是在超线性模式和三极管模式20W的功率40W。
因为真的有六个输出级模式和反馈量的组合,我要给两个极端的特点:最大的反馈和最小的超线性反馈三极管。
图1A显示了在不同负载模式下的超线性放大器的频率响应。 可以看出,输出阻抗,作为判断之间开路,8欧姆,4欧姆负荷曲线间距接近,一个为一管放大器相对较低的价值。 与音频范围内的莱科萨斯假负载的变化,是秩序+ / - 1dB的。 图1b显示了以最小的反馈三极管模式下的频率响应。 这里可以看出,曲线间距大大降低阻尼系数与随之而来的更大。 此外,-以上的音频范围的超线性输出峰值是在三极管输出缺席。 未显示的是相对曲线间距大约为超线性相同,为三个不同数量的反馈三极管的。
图2a显示了总谐波失真加噪声与功率为1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 在超线性,在达到相同的功率约为4 - 和8欧姆的负载。 在图2b中,实现权力稍有4欧姆负载较高。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3a密谋超线性模式。 崛起中的低失真和高频率的数额是合理的和管功率放大器的典型。 在图3b为三极管,失真的数额大致相同的项目,除了在高频率的增加额超线性输出,是一个大一些。
阻尼随频率变化的因素是显示在图4a和三极管和超线性4B条,分别为。
阿的谐波失真和10W的1kHz的测试信号噪声残留在频谱图5a和图5b密谋超线性和三极管模式。 将AC -线路谐波幅度是许多放大器的典型,以及与线路谐波互调信号的谐波成分是围绕清零时根本信号频率和较低的谐波可见。 信号谐波频谱尾巴了合理的迅速发展。
TOP
30#

Monarchy Audio SE-160 Mono Amplifiers

Additional Data

  • Measurements were made with 120V AC line voltage.
  • Power output and distortion plotted with one channel driven (this is a mono amplifier).
  • Gain: 11.3x, 21.1dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.536mV, -74.5dBW; A weighted 0.185mV, -83.7dBW.
  • AC line current draw at idle: 1.47A.
  • Output impedance at 50Hz: 0.3 ohms.
  • This amplifier inverts polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 40W
  • 8-ohm load at 10% THD: 230W

  • 4-ohm load at 1% THD: 72W
  • 4-ohm load at 10% THD: 470W
General
The Monarchy Audio SE-160 is an interesting attempt to duplicate some of the characteristics of a single-ended (SE) tube amplifier in a hybrid solid-state design. What is very SE-tube-like is the amount and way the distortion rises with power output, with the second harmonic being dominant. This distortion characteristic, no doubt, is generated in the vacuum-tube front end of this design. What is different from most tube SE amplifiers is the wide bandwidth and low out impedance of the SE-160.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen in the chart, the high-frequency bandwidth is about 100kHz and is nicely controlled in shape as a function of loading. In the case of the NHT dummy load, the variation is about a harmless +/-0.25dB. Chart 2 illustrates how total harmonic distortion plus noise versus power varies for 1kHz and SMPTE IM test signals and amplifier output load. As can be seen, attainable power is greater for the 4-ohm load, as is usual for most power amplifiers. Note the SE-tube-like smooth increase in distortion over the whole power range. Also note that the distortion is less for a 4-ohm load. Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Admirable is the low increase in distortion at the higher frequencies. Damping factor versus frequency is shown in Chart 4. A spectrum of the harmonic distortion and noise residue is plotted in chart 5 for an 8-ohm load. The AC-line harmonic spectrum is composed of odd harmonics, and there are some modulation effects of the line frequency around the second harmonic of the signal test frequency of 1kHz. The signal frequency harmonic components fall off in a nice manner with the second harmonic most dominant. This is said to have desirable sonic consequences.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 5W to determine lines)
Top line: 8-ohm SMPTE IM
Second line: 4-ohm SMPTE IM
Third line: 8-ohm THD+N
Bottom line: 4-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Cyan line: 160W
Blue line: 75W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量是用120V交流电压。
  • 输出功率和失真绘制一个驱动通道(这是一个单声道放大器)。
  • 增益:11.3x,21.1分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.536mV,- 74.5dBW,一个加权0.185mV,- 83.7dBW。
  • 交流线电流消耗在空闲:1.47A。
  • 在50Hz输出阻抗:0.3欧姆。
  • 该放大器颠倒极性。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真功率:40W
  • 8欧姆负载为10%总谐波失真:230W

  • 4欧姆负载,1%总谐波失真:72W
  • 4欧姆负载为10%总谐波失真:470W
一般
君主立宪制音频硒160是一个有趣的尝试重复混合固态设计的一个名额单(SE)的管放大器的一些特征。 什么是非常硒筒状的金额和方式的失真与输出功率的上升,与第二谐波被占主导地位。 这种失真的特点,无疑是产生这种设计真空管前端。 什么是大多数管放大器不同的是SE的宽带宽和的SE - 160低输出阻抗。
图1显示了用不同的负载放大器的频率响应。 由于可以在如图所示,高频带宽约为100kHz和控制是很好的形状作为一个加载功能。 在莱科萨斯假负载的情况下,变化是关于一个无害的+ / -0.25分贝。 图2说明了总谐波失真加噪声功率比和SMPTE即时1kHz的测试信号和放大器的输出负载变化。 可以看出,可实现功率为4欧姆负载更大,因为是常见的,最功率放大器。 请注意在变形硒筒状在整个功率范围内平稳增长。 还要注意,失真是一个4欧姆负载少。 总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 令人钦佩的是在较高的频率失真低增长。 阻尼频率因子与图4所示。 阿的谐波失真和噪声残留频谱图表5绘制一个8欧姆的负载。 在交流线路谐波频谱是由奇次谐波,而且都是围绕1kHz的测试频率的二次谐波信号频率的某些行调制效果。 该信号的频率谐波分量落在一个不错的方式出现的二次谐波最占主导地位。 据称,这是具有理想的声波的后果。
TOP
31#

NAD C372 Integrated Amplifier

Additional Data

  • Measurements were made at 120V AC line voltage with both channels being driven; measurements made on left channel unless otherwise noted. The volume control was set to the reference position to produce 5W into 8 ohms with 500mV input unless otherwise noted.
  • This integrated amplifier does not invert polarity with or without tone controls engaged.
  • AC line current draw:
    • at idle: 0.59A
    • in standby: 0.04A
  • Input sensitivity for 1W output into 8 ohms, volume at maximum: 35.0mV
  • Output impedance at 50Hz: 0.035 ohms
  • Gain, output voltage divided by input voltage, volume at maximum: 80.8X, 38.2dB
  • Output noise, 8-ohm load, 1k-ohm input termination, Lch/Rch
    • Volume control at reference position
      • wideband: 0.40mV, -77.0dBW / 0.37mV, -77.7dBW
      • A weighted: 0.11mV, -88.2dBW / 0.078mV, -91.2dBW
    • Volume control full clockwise
      • wideband: 0.62mV, -73.2dBW / 0.54mV, -74.4dBW
      • A weighted: 0.14mV, -86.1dBW / 0.095mV, -89.5dBW
    • Volume control full counterclockwise
      • wideband: 0.38mV, -77.4dBW / 0.34mV, -78.4dBW
      • A weighted: 0.058mV, -93.8dBW / 0.089mV, -90.0dBW

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 189W
  • 8-ohm load at 10% THD: 228W

  • 4-ohm load at 1% THD: 185.5W
  • 4-ohm load at 10% THD: 228.7W
General
The NAD C372 is a medium-power solid-state integrated amplifier. Overall gain of the unit is about normal for an integrated amplifier. Of interest, and not always the case, is that the overall input/output polarity is maintained as non-inverting when the tone controls are engaged.
Chart 1 shows the frequency response of the amp with varying loads. The high-frequency response is quite wide. with an approximate 3dB down point of 200kHz. Output impedance, as judged by the closeness of spacing between the curves of open-circuit, 8-ohm, and 4-ohm loading, is quite low in the audio band. The usual NHT dummy-load curve is not shown as the variations in the response would not show. The variation with the NHT dummy load in the audio range is of the order of +/-0.05dB -- a negligible amount. The frequency response was quite independent of volume-control setting.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. Unusual for a solid-state power amplifier, the attainable power is about the same for 4- and 8-ohm loads. Amount of distortion is low right up to clipping -– the behavior of most solid-state power amplifiers.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is low except at the low-frequency extremes at the 150W level where the power supply just can’t supply the steady-state power in the 4-ohm loads. This didn’t happen with the 8-ohm loads.
Damping factor vs. frequency is shown in Chart 4 and is of a value and nature typical of many solid-state amplifiers being high up to about 1kHz and then rolling off with frequency.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. The magnitude of the AC-line harmonics are low and simple, and intermodulation components of line harmonics with signal harmonics are also low. Signal harmonics consist of a tapering off spectrum of even and odd harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Cyan line: 150W
Blue line: 70W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

  • 测量是在120V交流线路电压均为驱动渠道;在左声道,除非另有说明进行的测量。 音量控制设置为参考点产生500mV的输入到8欧姆5W的,除非另有说明。
  • 这种集成放大器不倒置或从事无音调控制极性。
  • 交流线路电流:
    • 在怠速:0.59A
    • 在待机状态:0.04A
  • 1W输出的输入灵敏度为8欧姆,音量开到最大:35.0mV
  • 在50Hz输出阻抗:0.035欧姆
  • 增益,输出电压的输入电压,在最大音量分为:80.8X,38.2分贝
  • 输出噪声,8欧姆负载,1K的欧姆输入终端,廖创兴/ Rch的
    • 音量控制在基准位置
      • 宽带:0.40mV,- 77.0dBW / 0.37mV,- 77.7dBW
      • A加权:0.11mV,- 88.2dBW / 0.078mV,- 91.2dBW
    • 音量控制旋钮顺时针满
      • 宽带:0.62mV,- 73.2dBW / 0.54mV,- 74.4dBW
      • A加权:0.14mV,- 86.1dBW / 0.095mV,- 89.5dBW
    • 音量控制逆时针
      • 宽带:0.38mV,- 77.4dBW / 0.34mV,- 78.4dBW
      • A加权:0.058mV,- 93.8dBW / 0.089mV,- 90.0dBW

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:189W
  • 8欧姆负载为10%总谐波失真:228W

  • 4欧姆负载,1%总谐波失真:185.5W
  • 4欧姆负载为10%总谐波失真:228.7W
一般
的NAD C372是一个中等功率固态放大器集成。 该单位的总增益约为为一体的综合放大器正常。 令人感兴趣的,而不是一味的情况下,其整体的输入/输出极性非反相时音调控制是从事维护。
图1显示了用不同的负载放大器的频率响应。 高频率响应是相当广泛。 与下调为200kHz点近似三分贝。 输出阻抗,如之间开路,8欧姆,4欧姆负荷曲线间距接近判断,是相当低的音频频带。 通常莱科萨斯假负载曲线不显示为响应中的变化将不会显示。 与音频范围内的变化是莱科萨斯假负载的+ / -0.05分贝秩序 - 微不足道。 频率的反应相当的音量控制设置无关。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 寻常的固态功放,达到相同的功率约为4 - 和8欧姆的负载。 低失真的数额直到剪辑 - 大多数固态功率放大器的行为。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的数额除外水平,在150W的电源供应就不能在4欧姆负载的稳态功耗低频率极端低。 这并没有发生在8欧姆负载。
阻尼系数与频率是在图4所示,并与自然的价值,许多固态被高至约1kHz的频率,然后滚动典型的就是关闭放大器。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 将AC -线路谐波幅度是线路谐波低,简单,和互调分量信号谐波也较低。 信号谐波组成的偶数和奇数谐波频谱逐渐减少。
TOP
32#

Opera Consonance Reference 9.9A Mono

  • Measurements were made with 120V AC line voltage.
  • Gain: 14.9x, 23.5dB.
  • Output noise, 8-ohm load: wideband 1.33mV, -66.5dBW; A weighted 0.110mV, -88.2dBW.
  • AC line current draw at idle: 1.36A.
  • Output impedance (measured by an injection of a constant 1A of current at 50Hz): 2.86 ohms.
  • This amplifier inverts polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 10W
  • 8-ohm load at 10% THD: 22W

  • 4-ohm load at 1% THD: 1.8W
  • 4-ohm load at 10% THD: 17W

  • 16-ohm load at 1% THD: 13W
  • 16-ohm load at 10% THD: 18W
General
The Reference 9.9A SET (single-ended triode) amplifier measured here is typical of a design utilizing the venerable 845 output tube. Frequency response, as seen in Chart 1, rolls off at both ends of the audio range and there is some pronounced ultrasonic aberrations, likely due to the characteristics of the output transformer. Output impedance is moderate giving an approximate plus and minus 2dB frequency-response variation on the NHT dummy speaker load. Total harmonic distortion plus noise as a function of power output for a test frequency of 1kHz is plotted in Chart 2. It shows that the amount of distortion at the 1kHz test frequency is reasonably low at less than 1% up to 10W output for the 8-ohm load on the 8-ohm output (and measures similarly for a 4-ohm load on the 4-ohm output). However, loading the 8 ohm output with 4 ohm or 16 ohm load raises or lowers the distortion considerably. Total harmonic distortion plus noise as a function of frequency at several power levels is plotted in Chart 3. Amount of distortion over the main midrange energy band is less than 1-2% for power outputs of 10W or less. However, distortion does rise considerable at both ends of the audio range. Damping factor versus frequency shown in Chart 4 is a modest 2.5 over the middle range of frequencies, and actually increases a bit at the frequency extremes. Not surprisingly, on the 4-ohm output, the damping factor was about double. In the spectral plot of distortion and noise for a 10W 1kHz signal into an 8-ohm load on the 8-ohm output (Chart 5), the signal distortion components are dominated by the second and third harmonics with the higher-order products tailing off rapidly. There are some 120Hz sidebands around the nulled out fundamental along with a fairly high amount of AC line hum harmonic frequencies. The amount of wideband noise of over 1mV would likely be audible on speakers with efficiencies of 90dB or more.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 8-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line: 8-ohm THD+N
Bottom line (red): 16-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Green line: 20W
Cyan line: 15W
Blue line: 10W
Magenta line: 5W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load


  • 测量是用120V交流电压。
  • 增益:14.9x,二十三点五分贝。
  • 输出噪声,8欧姆负载:宽带1.33mV,- 66.5dBW,一个加权0.110mV,- 88.2dBW。
  • 交流线电流消耗在空闲:1.36A。
  • 输出阻抗(由一个一个固定的1A电流测量注射在50Hz):2.86欧姆。
  • 该放大器颠倒极性。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:10W的
  • 8欧姆负载为10%总谐波失真:22W的

  • 4欧姆负载,1%总谐波失真:1.8W的
  • 4欧姆负载为10%总谐波失真:17W

  • 16欧姆负载,1%总谐波失真:13W的
  • 16欧姆负载为10%总谐波失真:18W的
一般
参考9.9A套(单端三极管)测量放大器在这里是一个古老的845利用输出管设计的典型。 频率响应,如图表1所示,滚降在音频范围内的两端,有一些明显的超声波畸变,可能由于输出变压器的特点。 输出阻抗是温和给一个近似的正,负2dB的频率响应在莱科萨斯虚拟扬声器负载的变化。 总谐波失真加作为权力为1kHz的测试频率输出功能噪声绘制于图2。 它表明,在1kHz时的失真测试频率是合理的低额不到1%上到10W的8欧姆输出8欧姆负载输出(和措施上的4 4欧姆负载同样 - 欧姆输出)。 然而,装载有4欧姆或16欧姆负载8欧姆输出提高或降低失真很大。 总谐波失真加作为频率的函数噪声功率水平在几个图3所示。 中档以上的主要能源带失真量小于1-2为10W的功率输出%或更少。 然而,不失真升起的音频范围的两端可观。 阻尼比在图4所示的频率因子是中等以上的频率范围2.5温和,实际增加的频率在极端一点。 毫不奇怪,在4欧姆输出,阻尼系数约一倍。 在失真和噪声为10W的1kHz的信号频谱图上成为一个8欧姆的输出(图5),信号失真分量是通过与高阶产品的尾矿关闭二次和三次谐波为主的8欧姆负载迅速。 周围有清零了基本的和相当高的数额AC线沿线的嗡嗡声谐振频率120Hz的边带一些。 对宽带噪声超过1mV的金额可能会发出声响与效率为90dB或更多的扬声器。
TOP
33#

Opera Audio M800 Mono

Additional Data

  • Amplifier was measured in both Ultralinear and Triode modes of operation.
  • Measurements were made with 120V AC line voltage.
  • Power output plotted with one channel driven (this is a mono amplifier).
  • Output tube plate current set to 35mA.
  • Gain, triode/ultralinear: 24.2x, 27.7dB/28.5x, 29.1dB.
  • Output noise, 8-ohm load
    • Ultralinear: wideband 0.48mV, -75.4dBW; A weighted 0.145mV, -85.8dBW.
    • Triode: wideband 0.445mV, -76.1dBW; A weighted 0.135mV, -86.4dBW.
  • AC line current draw at idle: 1.25A.
  • Output impedance
    • Ultralinear: 2.1 ohms.
    • Triode: 1.4 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal (triode)
  • 8-ohm load at 1% THD: 13W
  • 8-ohm load at 10% THD: 40W

  • 4-ohm load at 1% THD: 4W
  • 4-ohm load at 10% THD: 43W

  • 16-ohm load at 1% THD: 19W
  • 16-ohm load at 10% THD: 32W
Power output with 1kHz test signal (ultralinear)
  • 8-ohm load at 1% THD: 3.7W
  • 8-ohm load at 10% THD: 70W

  • 4-ohm load at 1% THD: 0.9W
  • 4-ohm load at 10% THD: 72W

  • 16-ohm load at 1% THD: 15W
  • 16-ohm load at 10% THD: 32W
General
Chart 1 shows that this amplifier has a relatively wide bandwidth in excess of 10Hz-100kHz. However, like many tube amplifiers, the output regulation is not too good due to the relatively high output impedance -- shown by the drop in level from open circuit to 4-ohm loading. The "Triode" mode has lower output impedance and, therefore, better output regulation. Chart 2 shows that the "Triode" mode has lower distortion than the "Ultralinear" mode, but with about half the power available. Power output and distortion are best with the rated load on either of the output taps. With a load of half of the rated value, the power output is about the same, but at higher distortion. With a load of twice the rated value, distortion is lower but so is output power. This amp can deliver about 35W in "Triode" mode and 60W in "Ultralinear" mode at about 2-3% distortion over most of the audio range into the rated load. Chart 3, which shows distortion versus frequency, shows the "Triode" mode as having the lowest distortion, and unusually and desirably, the distortion amount is fairly constant with frequency. However, in the "Ultralinear" mode, the distortion at low frequencies rises quite a bit at low frequencies. Damping factor in the two modes is illustrated in Chart 4 with the "Triode" mode having the highest damping factor (lowest output impedance). In Chart 5, the higher harmonics are lower in the triode mode.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading

Triode mode with data taken on the 8-ohm tap

Red line: open circuit
Green line: dummy speaker load
Magenta line: 8-ohm load
Blue line: 4-ohm load

Ultralinear mode with data taken on the 8-ohm tap

Red line: open circuit
Green line: dummy speaker load
Magenta line: 8-ohm load
Blue line: 4-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading

Triode mode with data taken on the 8-ohm tap

Top line: 8-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line (red): 8-ohm THD+N
Bottom line: 16-ohm THD+N

Ultralinear mode with data taken on the 8-ohm tap

Top line: 8-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line (red): 8-ohm THD+N
Bottom line: 16-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency

Triode mode with data taken on the 8-ohm tap

8-ohm output loading
Green line: 35W
Blue line: 20W
Magenta line: 5W
Red line: 1W

Ultralinear mode with data taken on the 8-ohm tap

8-ohm output loading
Green line: 35W
Blue line: 20W
Magenta line: 5W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency

Triode and Ultralinear modes both plotted

Damping factor = output impedance divided into 8
Red line: Triode
Magenta line: Ultralinear

Chart 5 - Distortion and Noise Spectrum

Triode mode with data taken on the 8-ohm tap

1kHz signal at 10W into an 8-ohm load

Ultralinear mode with data taken on the 8-ohm tap

1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量放大器在超线性和三极管两种操作模式。
  • 测量是用120V交流电压。
  • 输出功率驱动绘制一个通道(这是一个单声道放大器)。
  • 管板输出电流设置为35毫安。
  • 增益,三极管/超线性:24.2x,27.7dB/28.5x,二十九点一分贝。
  • 输出噪声,8欧姆负载
    • 超线性:宽带0.48mV,- 75.4dBW,一个加权0.145mV,- 85.8dBW。
    • 三极管:宽带0.445mV,- 76.1dBW,一个加权0.135mV,- 86.4dBW。
  • 交流线电流消耗在空闲:1.25A。
  • 输出阻抗
    • 超线性:2.1欧姆。
    • 三极管:1.4欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号(三极管)
  • 8欧姆负载,1%总谐波失真:13W的
  • 8欧姆负载为10%总谐波失真功率:40W

  • 4欧姆负载,1%总谐波失真:4W的
  • 4欧姆负载为10%总谐波失真:43W

  • 16欧姆负载,1%总谐波失真:19W
  • 16欧姆负载为10%总谐波失真:32W
功率输出1kHz的测试信号(超线性)
  • 8欧姆负载,1%总谐波失真:3.7W
  • 8欧姆负载为10%总谐波失真功率:70W

  • 4欧姆负载,1%总谐波失真:0.9瓦
  • 4欧姆负载为10%总谐波失真:72W

  • 16欧姆负载,1%总谐波失真:15W的
  • 16欧姆负载为10%总谐波失真:32W
一般
图1表明,该放大器具有在为10Hz - 100kHz的过剩比较宽的带宽。 然而,像许多管放大器中,输出调节不太好,由于相对较高的输出阻抗 - 由在水平下降,由开路4欧姆负荷所示。在“三极”模式具有较低的输出阻抗,因此,更好的输出调节。 图2表明,“三极”模式比“超线性”模式低失真,但大约一半的可用功率。 输出功率和失真的最好用的水龙头或输出额定负荷。 与一对额定负荷值的一半,功率输出大约是相同的,但在较高的失真。 随着价值两倍的额定载荷,失真度低,但这样的输出功率。 此放大器可提供约在“三极”模式和“超线性”模式60瓦35瓦以上的音频范围为额定负荷最大约2-3%的失真。 图3,这说明与频率失真,显示为具有最低失真的“三极管”模式,并刻意异常,变形的数量也相当与频率的关系。 然而,在“超线性”模式,在低频率的失真非常低的频率上升了一点。 阻尼因子的两种模式图4所示的“三极管”具有最高的阻尼因子(最低输出阻抗)模式。 图表5,高次谐波在三极管模式下。
TOP
34#

Opera Audio Consonance Cyber-10 Signature

Additional Data

  • Measurements were made at 120V AC line voltage with both channels being driven.
  • Measurements made on the left channel with volume control set for 5W/8 ohm on the 8-ohm output for 500mV input signal level and taken on the 8-ohm output unless otherwise noted.
  • Input sensitivity, Lch/Rch: 54.4mV/51.7mV
  • Gain, Lch/Rch: 52.0X, 34.3dB/54.7X, 34.8dB
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination, Lch/Rch: wideband, 0.27mV, -80.4dBW/1.1mV, -68.2dBW; A-weighted, 0.11mV, -88.2dBW/0.12mV, -87.5dBw.
  • AC line current draw at idle: 1.2A.
  • Output impedance at 50Hz: 2.2 ohms.
  • This integrated amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 4.5W
  • 8-ohm load at 10% THD: 11.8W

  • 4-ohm load at 1% THD: 2.2W
  • 4-ohm load at 10% THD: 9.9W
General
The Opera Consonance Cyber-10 Signature is a low-power integrated tube amplifier utilizing a great complement of tubes, including a 12AX7 first tube, a 6SN7 phase-inverter driver, and most interesting of all, a pair of 2A3 directly heated triodes operated in push-pull for output. These 2A3s are of the single-plate variety and made in Russia. I, being interested in tubes for a long time, was more familiar with the more common, dual-plate variety of 2A3s.
When I received the amp for measurement, one of the four output tubes had an open filament. Being determined to listen to this amp, I dug into my old bag of tubes dating back to my high school days and found, to my amazement and relief, exactly one pair of ancient 2A3 tubes. The old tubes worked just fine, and the amp sounded quite musical in my setup. Replacement tubes were obtained from the importer and the measurements were made with the intended tubes installed.
Directly heated triode output tubes frequently have hum balance controls. In the case of the Cyber-10 Signature, I had adjusted these for minimum hum, and the right channel had somewhat more hum, reflected in the wideband number. Normally, if the channels are more or less similar, only one channel's data is shown.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen, the output impedance, as judged by the closeness of spacing between the curves of the open circuit as well as 8-ohm and 4-ohm loading, is of a typical value for tube amplifiers. The variation with the NHT dummy load in the audio range is of the order of +1/-1.5dB. Frequency response as a function of volume control setting was plotted over a range of 0dB down to -60dB, and the response was found to be quite constant over this range. The level tracking of the two channels stayed within about 1.5dB over this range, with the right channel usually being the higher output of the two.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. The amp is well matched to produce the best result with tap loading -- meaning with an 8-ohm load on the 8-ohm output and a 4-ohm load on the 4-ohm output. However, power and distortion are still reasonable with loads of half and double the output-tap value.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is very respectable for a low-power integrated amplifier.
Damping factor vs. frequency is shown in Chart 4 and is of a value typical of many tube amplifiers.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. The magnitude of the AC-line harmonics are quite numerous, and intermodulation components of line harmonics with the signal fundamental and harmonics are also very numerous and visible. The standard test level normally used of 10W is into clipping for this amp. Lower-power spectrum results showed a nice, quickly decaying spectrum of harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 2W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 10W
Blue line: 6W
Magenta line: 3W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 8-ohm load

  • 测量是在120V交流线路电压均为驱动渠道。
  • 就测量与音量控制设置为5W的左/ 8欧姆的500mV的输入信号电平为8欧姆输出和8欧姆的输出,除非另有说明,所采取的渠道。
  • 输入灵敏度,廖创兴/ Rch的:54.4mV/51.7mV
  • 增益,廖创兴/ Rch的:52.0X,34.3dB/54.7X,34.8分贝
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端,廖创兴/ Rch的:宽带,0.27mV,-80.4dBW/1.1mV,- 68.2dBW; A加权,0.11mV,-88.2dBW/0.12mV ,- 87.5dBw。
  • AC线在空闲电流消耗:1.2A的。
  • 在50Hz输出阻抗:2.2欧姆。
  • 这种集成放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:4.5条
  • 8欧姆负载为10%总谐波失真:11.8W

  • 4欧姆负载,1%总谐波失真:2.2W
  • 4欧姆负载为10%总谐波失真:9.9W
一般
歌剧院协和数码- 10签名是一种低功率管放大器集成利用极大地补充了管,包括一个12AX7管第一管,6SN7相逆变器驱动程序,最有趣的是,有的2A3直接加热对工作在三极管推挽输出。 这些2A3s是单盘品种,在俄罗斯制造。 我作为兴趣很长一段时间管,更是较常见的,双板2A3s各种熟悉。
当我收到测量放大器,四个输出管一有一个开放的灯丝。 被确定听这放大器,我挖我的旧的管袋可以追溯到我高中时代,发现,我的惊讶和救济,正是一种古老2A3管对。 老管效果很好,而放大器响起了我的设置相当的音乐剧。 更换管道,以搜集有关进口商和测量结果与预期的安装管制成。
直热式三极管输出管道经常有嗡嗡声平衡控制。 在网络- 10签名的情况下,我调整了最低哼这些,右声道了较为哼哼,在宽带数字反映出来。 通常,如果渠道都或多或少类似的,只是一个通道的数据显示。
图1显示了用不同的负载放大器的频率响应。 可以看出,输出阻抗,由之间的开路曲线间距以及8欧姆和4欧姆负荷亲密判断,是一个管放大器的典型值。 与音频范围内的莱科萨斯假负载变化的1 / - 1.5dB的秩序。 频率作为一种功能性反应的音量控制设置,绘制了一个范围为0dB到- 60dB的,反应被认为是在这个范围内相当恒定。 该级的两个通道内逗留约1.5dB的跟踪在这个范围内,与右声道通常是两个更高的输出。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 该放大器匹配良好,生产用自来水装载最好的结果 - 与一对8欧姆输出8欧姆负载和一个4欧姆输出4欧姆负载的意义。 但是,电源和失真仍与半负荷合理和双输出抽头的价值。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的数量十分可观的低功耗集成放大器。
阻尼随频率变化的因素是显示在图4和第一个值,许多典型的就是管放大器。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 将AC -线路谐波幅度都相当多,与信号的基本路线和谐波互调谐波成分也非常多,而且可见。 标准测试水平通常使用的10W的功放成这个剪辑。 低功率谱结果显示,美观大方,快速的谐波衰减谱。
TOP
35#

Oracle Audio SI 1000

Additional Data

  • Measurements were made at 120V AC line voltage with both channels driven; measurements made on left channel with unbalanced input unless otherwise noted.
  • This integrated amplifier does not invert polarity.
  • AC line current draw:
    • at idle: 0.72A
    • in standby: 0.32A
  • Input sensitivity for 1W output into 8 ohms, volume at maximum: 49.2mV
  • Input impedance @ 1kHz:
    • balanced inputs: 47.0k ohms
    • unbalanced inputs: 24.0k ohms
  • Output impedance at 50Hz: 0.4 ohms
  • Gain, output voltage divided by input voltage, volume at maximum: 57.2X, 35.2dB
  • Output noise, 8-ohm load, 1k-ohm input termination, Lch/Rch
    • Volume control at reference position
      • wideband: 0.65mV, -72.8dBW / 0.68mV, -72.4dBW
      • A weighted: 0.28mV, -80.1dBW / 0.35mV, -78.2dBW
    • Volume control full clockwise
      • wideband: 1.39mV, -66.2dBW / 1.37mV, -66.3dBW
      • A weighted: 0.59mV, -73.6dBW / 0.62mV, -73.2dBW
    • Volume control full counterclockwise
      • wideband: 0.60mV, -73.5dBW / 0.66mV, -72.6dBW
      • A weighted: 0.27mV, -80.4dBW / 0.34mV, -78.4dBW

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 141.3W
  • 8-ohm load at 10% THD: 173.1W

  • 4-ohm load at 1% THD: 213.4W
  • 4-ohm load at 10% THD: 266.6W
General
The Oracle SI 1000 is a remote-controlled, medium-power solid-state integrated amplifier. Overall gain of this unit is about right for a modern integrated amplifier -- a bit higher than average power-amp-only gain.
Chart 1 shows the frequency response of the amp with varying loads. This plot was made with the reference volume-control position as set for 0.5V input to produce 5W output into an 8-ohm load. The high-frequency response is moderately wide, with an approximate 3dB-down point of about 60kHz. Output impedance as judged by the closeness of spacing between the curves of open-circuit, 8-ohm and 4-ohm loading is somewhat high for solid-state power amplifiers. Still, the variation with the NHT dummy speaker load is only of the order of +/- 0.25dB -- it’s not going to make much of an audible difference with most speakers. Of note, the high-frequency roll-off shape is nicely independent of loading. The frequency response of this unit was quite independent of volume-control setting. Tracking between channels was within about 0.1dB from full up to -70dB of attenuation.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. Not typical of most solid-state amplifiers, distortion maximizes right in the typical listening range of power output, in the 1-5W range.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3 for 4-ohm loading. The amount of rise in distortion at high frequencies is quite pronounced, with some rise at the very low frequencies at 200W output.
Damping factor vs. frequency is shown in Chart 4 and is of a value and nature not typical of most power amplifiers -- being relatively low and uniform over most of the audio range. As mentioned earlier, the output impedance is relatively high for a solid-state power amplifier, yielding a damping factor of about 20.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal into 8 ohms is plotted in Chart 5. The magnitudes of the AC-line harmonics are moderately high and complex in nature. However, intermodulation components of line harmonics with signal harmonics are low. Signal harmonics consist of a tapering off spectrum of even and odd harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Green line: 200W
Cyan line: 160W
Blue line: 120W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量是在120V交流渠道,既驱动电压;在左声道输入测量作出的不平衡,除非另有说明。
  • 这种集成放大器的极性不能倒置。
  • 交流线路电流:
    • 在怠速:0.72A
    • 在待机状态:0.32A
  • 1W输出的输入灵敏度为8欧姆,音量开到最大:49.2mV
  • @ 1kHz的输入阻抗:
    • 平衡式输入:47.0k欧姆
    • 不平衡输入:24.0k欧姆
  • 在50Hz输出阻抗:0.4欧姆
  • 增益,输出电压的输入电压,在最大音量分为:57.2X,35.2分贝
  • 输出噪声,8欧姆负载,1K的欧姆输入终端,廖创兴/ Rch的
    • 音量控制在基准位置
      • 宽带:0.65mV,- 72.8dBW / 0.68mV,- 72.4dBW
      • A加权:0.28mV,- 80.1dBW / 0.35mV,- 78.2dBW
    • 音量控制旋钮顺时针满
      • 宽带:1.39mV,- 66.2dBW / 1.37mV,- 66.3dBW
      • A加权:0.59mV,- 73.6dBW / 0.62mV,- 73.2dBW
    • 音量控制逆时针
      • 宽带:0.60mV,- 73.5dBW / 0.66mV,- 72.6dBW
      • A加权:0.27mV,- 80.4dBW / 0.34mV,- 78.4dBW

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:141.3W
  • 8欧姆负载为10%总谐波失真:173.1W

  • 4欧姆负载,1%总谐波失真:213.4W
  • 4欧姆负载为10%总谐波失真:266.6W
一般
Oracle的硅1000是一个远程控制,中等功率固态放大器集成。 本机的总增益是关于一个现代化的综合放大器的权利 - 一个比平均功率放大器仅获得更高。
图1显示了用不同的负载放大器的频率响应。 此图写了与参考音量控制位​​置为0.5V的输入,以产生为8欧姆负载5W输出设置。 高频率响应略宽,有一个近似3dB的减约60kHz点。 输出阻抗之间所开路,8欧姆和4欧姆负荷曲线间距判断是有点接近固态功率放大器高。 尽管如此,与莱科萨斯虚拟扬声器负载变化只是秩序+ / - 0.25分贝 - 它不会取得多大的区别与大多数发言者发声。 值得注意的是,高频滚降形状是很好的装载无关。 该单位的频率响应相当音量控制设置无关。 通道间跟踪了约0.1dB的范围内从全高达- 70dB的衰减。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 并非最固态放大器的典型,就在最大化失真输出功率的典型听力范围内,在1 - 5W的范围。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示为4欧姆负载。 在高频率的失真量是相当明显的上升,一些在非常低的频率在200W的输出上升。
阻尼随频率变化的因素是显示在图4和第一个值和性质不典型大多数功率放大器是 - 统一是相对较低,在大多数的音频范围。 如前所述,输出阻抗是相对固态功率放大器高,收益率约20阻尼系数。
阿的谐波失真和10W的1kHz的测试信号噪声残留为8欧姆谱绘制于图5。 在交流线路谐波的幅度适度高,性质复杂。 然而,与线路谐波互调信号的谐波成分低。 信号谐波组成的偶数和奇数谐波频谱逐渐减少。
TOP
36#

Orpheus Laboratories Three S Stereo

Additional Data

  • Measurements were made with 120V AC line voltage.
  • Power output and distortion plotted with both channels driven.
  • Test signal applied to unbalanced inputs unless otherwise noted.
  • Gain, unbalanced input/balanced input: 34.9x, 30.9dB/17.2x, 24.7dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.348mV, -78.2dBW; A weighted 0.087mV, -90.2dBW.
  • Output noise, 8-ohm load, balanced input, 600-ohm input termination: wideband 0.295mV, -79.6dBW; A weighted 0.080mV, -91.0dBW.
  • AC line current draw at idle: 0.367A.
  • Output impedance at 50Hz: 2.89 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 40W

  • 4-ohm load at 1% THD: 62W
General
The Orpheus Three S design purports to deliver constant power to a varying impedance speaker load instead of the usual constant voltage. With either a constant voltage or constant current source to a speaker, the delivered power will not be constant as a function of frequency. Some output impedance between zero and infinite could deliver a constant power. In measuring the Atma-Sphere MA-1 Mk II amp some while ago, I found that that design had an output impedance of about 10 ohms. Designer Ralph Karsten went to considerable trouble to show that his amp delivered quite constant power into my NHT dummy speaker load. In short, the Orpheus Three had an output impedance of about 2.9 ohms measured both from the data of Chart 1 and with the 1A current-insertion method to generate Chart 4. Therefore, the amp did not generate constant power as a function of loading. As I have stated previously, not constant power, but constant voltage out of a power amplifier as a function of varying speaker impedance loads is what the majority of speaker manufacturers assume to drive their speakers.
Measurements were made through the unbalanced inputs. Results were essentially the same through the balanced inputs. Chart 1 shows the frequency response of the amp with varying loads. As discussed in past measurements, a high output impedance will have the effect of causing the designed frequency response for a speaker that was designed for constant voltage to vary by as much as the voltage varies when driving that speaker. As can be seen in Chart 1, in the case of the NHT dummy load, that variation is almost +/- 2dB. Chart 2 illustrates how total harmonic distortion plus noise versus power varies for a 1kHz and SMPTE IM test signals and amplifier output load. As can be seen, attainable power is greater for the 4-ohm load, as is usual for most power amplifiers. Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Of interest, all powers levels below clipping seem to have the same distortion at 20kHz. Damping factor versus frequency is shown in Chart 4. A spectrum of the harmonic distortion and noise residue is plotted in Chart 5. Both the AC line and signal frequency have a rich series of harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load
Green line: NHT dummy speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Red line: 1W (overlaps with magenta)
Magenta line: 10W (overlaps with red)
Blue line: 30W
Cyan line: 50W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

  • 测量是用120V交流电压。
  • 输出功率和失真策划既带动渠道。
  • 测试信号施加到非平衡输入,除非另有说明。
  • 增益,非平衡输入/平衡输入:34.9x,30.9dB/17.2x,24.7分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.348mV,- 78.2dBW,一个加权0.087mV,- 90.2dBW。
  • 输出噪声,8欧姆负载,平衡输入,600欧姆的输入端接:宽带0.295mV,- 79.6dBW,一个加权0.080mV,- 91.0dBW。
  • 交流线电流消耗在空闲:0.367A。
  • 在50Hz输出阻抗:2.89欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真功率:40W

  • 4欧姆负载,1%总谐波失真:62W的
一般
奥菲斯三S设计的意图,提供恒定的功率也不同阻抗的扬声器负载电压而不是通常的常数。无论使用哪种恒定电压或恒定电流源到扬声器,输出功率恒定频率将不会作为一个函数。一些与无限之间的零输出阻抗可以提供恒定的功率。 在衡量 阿特玛球的MA - 1马可福音二放一些以前,我却发现,设计了一个10欧姆的输出阻抗约。 设计师拉尔夫卡斯滕到 相当大的麻烦,显示 他的放大器提供虚拟扬声器负载相当恒定的功率为我的莱科萨斯。 总之,奥菲斯三人一2.9欧姆输出阻抗测量约4无论从图表中的数据1和1A电流的插入方法生成图表。因此,放大器没有产生装货恒功率功能为。 正如我前面提到过,没有恒功率,恒功率放大器的电压,但出了作为一个功能不一的扬声器负载阻抗是扬声器的制造商承担大部分的扬声器来驱动。
通过测量是不平衡的投入。 结果基本上是相同的,通过平衡输入。 图1显示了用不同的负载放大器的频率响应。 一如以往的测量讨论,高输出阻抗会导致有一个恒定的电压,这对于设计不尽相同只要电压远扬声器所设计的频率响应变化的影响开车时该扬声器。 可以看出,图一,在莱科萨斯假负载情况下,该变异几乎是+ / - 2dB的。 图2说明了总谐波失真加噪声功率比为1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 可以看出,可实现功率为4欧姆负载更大,因为是常见的,最功率放大器。 总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 有趣的是,以下限幅一切权力层次似乎有20kHz的歪曲了一样。 阻尼频率因子与图4所示。 阿的谐波失真和噪声残留谱绘制于图5。 无论是交流线路和信号频率有一系列丰富的谐波。
TOP
37#

Odyssey Audio Khartago Stereo

  • Measurements were made with 120V AC line voltage.
  • Power output and distortion plotted with both channels driven.
  • Gain: 37.0x, 31.4dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.527mV, -74.6dBW; A weighted 0.105mV, -88.6dBW.
  • AC line current draw at idle (warmed up): 0.6A.
  • Output impedance at 50Hz: 0.1 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 114W

  • 4-ohm load at 1% THD: 187W
General
The Odyssey Audio Khartago is a medium-power solid-state design with typically wide bandwidth and low output impedance.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen, the output impedance, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading is quite low. The variation with the NHT dummy load is about +/-0.1 dB, not of great consequence. Chart 2 illustrates how total harmonic distortion plus noise versus power varies for a 1kHz and SMPTE IM test signals and amplifier output load. As can be seen, attainable power is greater for the 4-ohm load as is usual for most power amplifiers. When the amount of distortion is fairly constant over a wide range of power, as is the case here, it is usually indicative of a dominance of even harmonic distortion. Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at high frequencies is relatively low, a desirable characteristic. Note how the amount of distortion here is fairly constant with power level over much of the frequency range. There is a beat frequency phenomenon in this amplifier between the 120Hz power-supply ripple frequency and the signal-frequency distortion components as evidenced by the peak/dip/peak in the chart in this frequency range. Damping factor versus frequency is shown in Chart 4. Unusual here is the falloff in the damping factor at low frequencies. A spectrum of the harmonic distortion and noise residue is plotted in Chart 5. The AC-line harmonics are quite prominent in this chart. Note that the even harmonics of the 1kHz test frequency, the second (2kHz), fourth (4kHz), and sixth (6kHz), are dominant as expected from the earlier comments on Chart 2.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load
Cyan line = NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Cyan line: 150W
Blue line: 80W
Magenta line: 20W
Red line: 2W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

  • 测量是用120V交流电压。
  • 输出功率和失真策划既带动渠道。
  • 增益:37.0x,三十一点四分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.527mV,- 74.6dBW,一个加权0.105mV,- 88.6dBW。
  • 交流线电流在空闲(热身):0.6A。
  • 在50Hz输出阻抗:0.1欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:114W

  • 4欧姆负载,1%总谐波失真:187W
一般
奥德赛音频Khartago是一个中等功率的固态与典型宽带宽和低输出阻抗设计。
图1显示了用不同的负载放大器的频率响应。 可以看出,输出阻抗,作为判断之间开路,8欧姆,4欧姆负荷曲线间距接近是相当低的。 用假负载变化莱科萨斯约+ / -0.1分贝不是很大的后果。 图2说明了总谐波失真加噪声功率比为1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 可以看出,可实现功率为4欧姆负载的是常见的,最功率放大器更大。当扭曲的数量也相当多宽的功率范围内保持恒定,因为这里的例子,它通常是一种优势,甚至谐波失真的指标。 总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 在高频率的增加额是失真比较低,一个理想的特征。 请注意这里的失真量相当与供电频率范围多水平不变。 在此有一个拍频放大器的120Hz之间的电源纹波频率与信号频率失真,由峰证明/文凭/在这个频率范围图中元件的峰值现象。 阻尼频率因子与图4所示。 这里是不寻常的低频阻尼因子衰减。 阿的谐波失真和噪声残留谱绘制于图5。 在交流线路谐波在此图表是相当突出。 请注意,1kHz的测试频率的偶次谐波,第二个(2kHz范围),第四届(为4kHz),六(6kHz的),是占据统治地位从图2中的预期早些时候的评论。
TOP
38#

PS Audio HCA-2 Stereo

  • Measurements were made with 120V AC line voltage with both channels driven (worse of two channels plotted).
  • Output noise, 8-ohm load: wideband 27.5mV, -40.2dBW (residual high-frequency switching noise at about 500kHz); A weighted 0.30mV, -79.5dBW.
  • AC line current draw at idle: 0.24A.
  • Output impedance (measured by an injection of a constant 1A of current at 50Hz): 0.14 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 150W
  • 8-ohm load at 10% THD: 180W

  • 4-ohm load at 1% THD: 250W
  • 4-ohm load at 10% THD: 310W
General
Measurements were conducted on the HCA-2 with balanced inputs. Results with unbalanced input feed were substantially the same. Chart 1 shows the effect of loading on the frequency response at the 1W level. Like all switching power amplifiers, the response at the very high end of the audio band and beyond is influenced by the load because of the necessary LCR low-pass filters in the amplifier's output circuit. However, this is not likely to have much effect on the perceived frequency response with most speakers. The response variation shown in Chart 1 is perhaps less than seen in other designs. The frequency response with the NHT load is almost perfect. The amplifier's output impedance in the audio band is low enough that little variation of response with speaker impedance variation should be expected. Total harmonic distortion plus noise and SMPTE IM distortion is plotted vs. power output and loading in Chart 2. In order to not have the small amount of the switching-frequency residual at the output affect this data at low power, the special sharp Audio Precision Apogee 20kHz low-pass filter was used for this measurement. Amount of distortion is moderate in amount -- more in the arena of many tube power amplifiers rather than very-low-measuring solid-state designs. Total harmonic distortion plus noise vs. frequency at several power levels is shown in Chart 3. The amount of distortion does rise considerably with frequency. In this chart, the measurement bandwidth was 80 kHz to pass most of the highest-amplitude harmonics at the high end of the audio range. Chart 4 shows that the damping factor is reasonably high in the HCA-2 leading to good speaker damping. Chart 5 shows a spectrum of the harmonic distortion components for a 1kHz 10W signal with 8-ohm loading. The even harmonics are considerably lower than the odd harmonics indicating good plus/minus polarity symmetry. However, the amount of odd harmonic distortion is fairly high.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Blue line: open circuit
Red line: 8-ohm load
Magenta line: 4-ohm load
Cyan line: NHT dummy speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line (red): 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Green line: 130W
Blue line: 50W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load


  • 测量是用120V交流渠道,既驱动电压(两个通道更糟绘制)。
  • 输出噪声,8欧姆负载:宽带27.5mV,- 40.2dBW(残高频开关噪声大约为500kHz); A加权0.30mV,- 79.5dBW。
  • 交流线电流消耗在空闲:0.24A。
  • 输出阻抗(由一个一个固定的1A电流测量注射在50Hz):0.14欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真功率:150W
  • 8欧姆负载为10%总谐波失真:180瓦

  • 4欧姆负载,1%总谐波失真:250瓦
  • 4欧姆负载为10%总谐波失真:310W
一般
进行测量的安徒生- 2平衡输入。 非平衡输入提要结果大致相同。 图1显示了在上1W的水平频率响应负载的影响。 像所有的开关电源放大器,在音频频段非常高端及以后所影响的反应是必要的,因为华润低通在放大器的输出电路的滤波器负载。 但是,这不太可能对大多数发言者认为影响不大的频率响应。 响应变化图1所示的设计或许比其他看到较少。 莱科萨斯与加载频率响应几乎是完美的。 该放大器在音频频带的输出阻抗足够低,与扬声器的阻抗变化的响应应该预计变化不大。 总谐波失真加噪声和SMPTE的IM失真功率输出和对比图2载入中绘制。 为了不具有的开关频率在输出端的残余量小的影响在低功率这个数据,特别尖锐的音频精度远地点20kHz低通滤波器该测量。 变形量适中的金额 - 在许多管功率放大器,而不是非常低的测量固态设计的舞台上。 总谐波失真加在多种功率与频率的噪音水平在图3所示。 失真的值不随频率大大上升。 在这个图中,测量带宽为80 kHz到通过在音频范围的高端的最高幅度谐波最多。 图4表明,阻尼因素是合理的安徒生- 2高阻尼导致好的演讲者。 图5显示了谐波失真元件一个1kHz 10W的8欧姆载荷信号的频谱。 甚至有较大的谐波,除了说明良好的加/减极性对称的奇​​次谐波低。 然而,奇次谐波失真的数量也相当高。
TOP
39#

Raysonic SP-100 Integrated

onal Data

  • Measurements were made at 120V AC line voltage with both channels driven and with volume control fully up unless otherwise noted.
  • Input sensitivity for 1W output into 8 ohms: 177mV.
  • Gain, output voltage divided by input voltage, volume at maximum: 16.0X, 24.1dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination, volume control fully up (clockwise position, worst case): wideband 0.37mV, -77.7dBW; A weighted 0.15mV, -85.5dBW.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination, volume control fully down (counterclockwise position): wideband 0.23mV, -81.8dBW; A weighted 0.08mV, -91.0dBW.
  • AC line current draw at idle: 1.77A.
  • Output impedance at 50Hz: 0.77 ohms.
  • This integrated amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 40W
  • 8-ohm load at 10% THD: 60W

  • 4-ohm load at 1% THD: 28W
  • 4-ohm load at 10% THD: 44W
General
The Raysonic SP-100 is a medium-power stereo push-pull tube integrated amplifier utilizing one pair of EL34 output tubes in each channel. This integrated amp has a digitally controlled volume control and selector switch ahead of the power amplifier.
Chart 1 shows the frequency response of the amp with varying loads. This amp has a nicely controlled high-frequency response with some way-out-of-band output-transformer aberrations above 100kHz. The output impedance, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading over most of the audio range is somewhat lower than typical for tube power amplifiers. The variation with the NHT dummy load in the audio range is about +/-0.7dB. Of academic interest with this design, the output impedance actually becomes 0 at 80kHz and becomes negative between 80kHz to about 160kHz where it becomes positive again.
Chart 2 illustrates how total harmonic distortion plus noise versus power varies for 1kHz and SMPTE IM test signals and amplifier output load. As is usual for most tube power amplifiers, the power at the onset of clipping is greatest for tap "matched" impedance, in this case, 8-ohm loading on the 8-ohm output.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is admirably low in this design.
Damping factor versus frequency is shown in Chart 4 and is amazingly constant over the whole audio range.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. AC-line harmonics are numerous but decrease in magnitude as the harmonic number goes up. The 120Hz line harmonic does intermodulate quite noticeably with the nulled-out 1kHz signal fundamental frequency. Some further intermodulation can be seen on the skirts of the second- and third-signal harmonic also. The decay of the amplitude of the signal harmonics is quite uniform and is judged to be desirable in some quarters.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 30W
Blue line: 20W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 8-ohm load

  • 测量是在120V交流渠道,既驱动电压和音量控制充分,除非另有说明。
  • 1W输出的输入灵敏度为8欧姆:177mV。
  • 增益,输出电压的输入电压,在最大音量分为:16.0X,24.1分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端,音量控制完全达到(顺时针方向的位置,最坏的情况):宽带0.37mV,- 77.7dBW,一个加权0.15mV,- 85.5dBW。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端,音量控制完全按下去(逆时针位置):宽带0.23mV,- 81.8dBW,一个加权0.08mV,- 91.0dBW。
  • 交流线电流消耗在空闲:1.77A。
  • 在50Hz输出阻抗:0.77欧姆。
  • 这种集成放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真功率:40W
  • 8欧姆负载为10%总谐波失真率:60W

  • 4欧姆负载,1%总谐波失真:28W
  • 4欧姆负载为10%总谐波失真:44宽
一般
该Raysonic的sp - 100是一种中等功率的立体声推挽功放管利用一个集成在每个输出通道EL34管对。 这种集成的放大器有一个数字控制音量控制和选择开关提前功率放大器。
图1显示了用不同的负载放大器的频率响应。 这种放大器具有一些出路带外输出变压器很好地控制畸变以上100kHz的高频率响应。 输出阻抗,如之间开路,8欧姆,4欧姆负荷曲线间距以上的音频范围最亲密判断是有点比管功率放大器典型的低。 与音频范围内的假负载变化莱科萨斯约+ / -0.7分贝。 与此设计学术兴趣,输出阻抗实际上变成80kHz的0,并成为在80kHz的负面之间约160kHz它变得积极了。
图2说明了总谐波失真加噪声功率比和SMPTE即时1kHz的测试信号和放大器的输出负载变化。 正如大多数管功率放大器往常一样,在权力的削波在这种情况下为龙头“匹配的”阻抗最大,8欧姆的8欧姆输出负载。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的金额为低,这样的设计令人钦佩。
阻尼频率因子与图4所示,是令人惊讶的在整个音频范围不变。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 交流线路的谐波很多,但增加的幅度减小,谐波数上升。 在120Hz的线路谐波​​不intermodulate相当明显的清零出1kHz的信号基频。 一些进一步的互调可以看出,对第二代和第三谐波信号也裙子。 该信号的谐波振幅衰减是相当均匀,被判定为在某些方面可取的。
TOP
40#

Rogue Audio Atlas Stereo

  • Measurements were made at 120V AC line voltage with both channels being driven.
  • Gain: 20.8x, 26.4dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.800mV, -71.0dBW; A weighted 0.418mV, -76.6dBW.
  • AC line current draw at idle: 1.82A.
  • Output impedance at 50Hz: 0.73 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 78W
  • 8-ohm load at 10% THD: 89W

  • 4-ohm load at 1% THD: 29W
  • 4-ohm load at 10% THD: 75W
General
The Rogue Audio Atlas is a medium-power push-pull stereo tube amplifier utilizing one pair of KT77 output tubes in each channel. I don’t recall seeing KT77 tubes before, but their plate structure looks like those of EL34 output tubes.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen, the out-of-band high-frequency response has some complex peaking going on. The output impedance over most of the audio range, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading, is lower than typical for tube power amplifiers. The variation with the NHT dummy load in the audio range is about +/-0.5dB.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. This design, with its single output connection for speaker loads, is more optimized for 8 ohms than 4 ohms. As can be seen, the power attainable is greater for 8-ohm loading for a given distortion amount. For lower-impedance speakers, the amp has 4-ohm taps that can be connected to the hot output terminals instead of the default 8-ohm taps.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is quite pronounced, but not atypical for many tube power amps.
Damping factor vs. frequency is shown in Chart 4. It rolls off at low and high frequencies quite a bit more than for other measured tube amplifiers. This can be inferred from Chart 1 where the spacing between the curves increases for low and high frequencies.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. AC-line harmonics are quite numerous but reasonably low in magnitude, and intermodulation components of line harmonics with signal harmonics are also reasonably low but visible. The principal signal harmonics are second and third, with the remaining harmonics more than 20dB below the level of the second and third harmonic.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line = NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 20W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 60W
Blue line: 30W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

  • 测量是在120V交流线路电压均为驱动渠道。
  • 增益:20.8x,二十六点四分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.800mV,- 71.0dBW,一个加权0.418mV,- 76.6dBW。
  • 交流线电流消耗在空闲:1.82A。
  • 在50Hz输出阻抗:0.73欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:78W
  • 8欧姆负载为10%总谐波失真:89W

  • 4欧姆负载,1%总谐波失真:29W
  • 4欧姆负载为10%总谐波失真:75W的
一般
盗贼音频Atlas是一个中等功率推挽立体声功放管利用每一个KT77管双声道输出。 我不记得看​​到KT77管过,但他们的板式结构像EL34输出管的表情。
图1显示了用不同的负载放大器的频率响应。 可以看出,出带外高频响应有一些复杂的调峰回事。 在以上的音频范围最输出阻抗,如之间开路,8欧姆,4欧姆负荷曲线间距接近判断,是较典型的低功率放大器管。 与音频范围内的假负载变化莱科萨斯约+ / - 0.5dB的。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 这与它的扬声器负载单输出接口设计,更优化的8比4欧姆欧姆。 可以看出,功率可以达到为8欧姆的负荷更大的一个给定的失真量。 对低阻抗的扬声器,放大器有4欧姆,可连接到热输出端子,而不是默认的8欧姆水龙头水龙头。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的金额是相当明显,但对于许多非典型功放管。
阻尼随频率变化的因素是列于图4。 它滚降低,高频率相当多的比其他测量管放大器。 这可以从图1,其中推断之间的低和高频率的曲线增加间距。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 交流线路的谐波幅度相当众多,但在合理的低,以及与线路谐波互调信号的谐波成分也相当低,但可见。 主要信号谐波第二和第三位,超过以下的第二和第三级谐波20dB的剩余谐波。
TOP
发新话题 回复该主题